Efficient overall water splitting in acid with anisotropic metal nanosheets

Water is the only available fossil-free source of hydrogen. Splitting water electrochemically is among the most used techniques, however, it accounts for only 4% of global hydrogen production. One of the reasons is the high cost and low performance of catalysts promoting the oxygen evolution reactio...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 12; no. 1; p. 1145
Main Authors Wu, Dongshuang, Kusada, Kohei, Yoshioka, Satoru, Yamamoto, Tomokazu, Toriyama, Takaaki, Matsumura, Syo, Chen, Yanna, Seo, Okkyun, Kim, Jaemyung, Song, Chulho, Hiroi, Satoshi, Sakata, Osami, Ina, Toshiaki, Kawaguchi, Shogo, Kubota, Yoshiki, Kobayashi, Hirokazu, Kitagawa, Hiroshi
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 16.02.2021
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Water is the only available fossil-free source of hydrogen. Splitting water electrochemically is among the most used techniques, however, it accounts for only 4% of global hydrogen production. One of the reasons is the high cost and low performance of catalysts promoting the oxygen evolution reaction (OER). Here, we report a highly efficient catalyst in acid, that is, solid-solution Ru‒Ir nanosized-coral (RuIr-NC) consisting of 3 nm-thick sheets with only 6 at.% Ir. Among OER catalysts, RuIr-NC shows the highest intrinsic activity and stability. A home-made overall water splitting cell using RuIr-NC as both electrodes can reach 10 mA cm −2 geo at 1.485 V for 120 h without noticeable degradation, which outperforms known cells. Operando spectroscopy and atomic-resolution electron microscopy indicate that the high-performance results from the ability of the preferentially exposed {0001} facets to resist the formation of dissolvable metal oxides and to transform ephemeral Ru into a long-lived catalyst. Ru is one of the most active metals for oxygen evolution reaction, but it quickly dissolves in acidic electrolyte particularly in nanosized form. Here, the authors show that coral-like solid-solution Ru‒Ir consisting of 3 nm-thick sheets with only 6 at% Ir is a long-lived catalyst with high activity.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-021-20956-4