Muscle satellite cells and endothelial cells: close neighbors and privileged partners

Genetically engineered mice (Myf5nLacZ/+, Myf5GFP-P/+) allowing direct muscle satellite cell (SC) visualization indicate that, in addition to being located beneath myofiber basal laminae, SCs are strikingly close to capillaries. After GFP(+) bone marrow transplantation, blood-borne cells occupying S...

Full description

Saved in:
Bibliographic Details
Published inMolecular biology of the cell Vol. 18; no. 4; pp. 1397 - 1409
Main Authors Christov, Christo, Chrétien, Fabrice, Abou-Khalil, Rana, Bassez, Guillaume, Vallet, Grégoire, Authier, François-Jérôme, Bassaglia, Yann, Shinin, Vasily, Tajbakhsh, Shahragim, Chazaud, Bénédicte, Gherardi, Romain K
Format Journal Article
LanguageEnglish
Published United States American Society for Cell Biology 01.04.2007
The American Society for Cell Biology
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Genetically engineered mice (Myf5nLacZ/+, Myf5GFP-P/+) allowing direct muscle satellite cell (SC) visualization indicate that, in addition to being located beneath myofiber basal laminae, SCs are strikingly close to capillaries. After GFP(+) bone marrow transplantation, blood-borne cells occupying SC niches previously depleted by irradiation were similarly detected near vessels, thereby corroborating the anatomical stability of juxtavascular SC niches. Bromodeoxyuridine pulse-chase experiments also localize quiescent and less quiescent SCs near vessels. SCs, and to a lesser extent myonuclei, were nonrandomly associated with capillaries in humans. Significantly, they were correlated with capillarization of myofibers, regardless to their type, in normal muscle. They also varied in paradigmatic physiological and pathological situations associated with variations of capillary density, including amyopathic dermatomyositis, a unique condition in which muscle capillary loss occurs without myofiber damage, and in athletes in whom capillaries increase in number. Endothelial cell (EC) cultures specifically enhanced SC growth, through IGF-1, HGF, bFGF, PDGF-BB, and VEGF, and, accordingly, cycling SCs remained mainly juxtavascular. Conversely, differentiating myogenic cells were both proangiogenic in vitro and spatiotemporally associated with neoangiogenesis in muscular dystrophy. Thus, SCs are largely juxtavascular and reciprocally interact with ECs during differentiation to support angio-myogenesis.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
These authors contributed equally to this work.
ISSN:1059-1524
1939-4586
DOI:10.1091/mbc.e06-08-0693