Vulnerability of biodiversity hotspots to global change

AIM: Global changes are predicted to have severe consequences for biodiversity; 34 biodiversity hotspots have become international priorities for conservation, with important efforts allocated to their preservation, but the potential effects of global changes on hotspots have so far received relativ...

Full description

Saved in:
Bibliographic Details
Published inGlobal ecology and biogeography Vol. 23; no. 12; pp. 1376 - 1386
Main Authors Bellard, Céline, Leclerc, Camille, Leroy, Boris, Bakkenes, Michel, Veloz, Samuel, Thuiller, Wilfried, Courchamp, Franck
Format Journal Article
LanguageEnglish
Published Oxford Blackwell Science 01.12.2014
Blackwell Publishing Ltd
John Wiley & Sons Ltd
Blackwell
Wiley Subscription Services, Inc
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract AIM: Global changes are predicted to have severe consequences for biodiversity; 34 biodiversity hotspots have become international priorities for conservation, with important efforts allocated to their preservation, but the potential effects of global changes on hotspots have so far received relatively little attention. We investigate whether hotspots are quantitatively and qualitatively threatened to the same order of magnitude by the combined effects of global changes. LOCATION: Worldwide, in 34 biodiversity hotspots. METHODS: We quantify (1) the exposure of hotspots to climate change, by estimating the novelty of future climates and the disappearance of extant climates using climate dissimilarity analyses, (2) each hotspot's vulnerability to land modification and degradation by quantifying changes in land‐cover variables over the entire habitat, and (3) the future suitability of distribution ranges of ‘100 of the world's worst invasive alien species’, by characterizing the combined effects of climate and land‐use changes on the future distribution ranges of these species. RESULTS: Our findings show that hotspots may experience an average loss of 31% of their area under analogue climate, with some hotspots more affected than others (e.g. Polynesia–Micronesia). The greatest climate change was projected in low‐latitude hotspots. The hotspots were on average suitable for 17% of the considered invasive species. Hotspots that are mainly islands or groups of islands were disproportionally suitable for a high number of invasive species both currently and in the future. We also showed that hotspots will increase their area of pasture in the future. Finally, combining the three threats, we identified the Atlantic forest, Cape Floristic Region and Polynesia–Micronesia as particularly vulnerable to global changes. MAIN CONCLUSIONS: Given our estimates of hotspot vulnerability to changes, close monitoring is now required to evaluate the biodiversity responses to future changes and to test our projections against observations.
AbstractList AIM: Global changes are predicted to have severe consequences for biodiversity; 34 biodiversity hotspots have become international priorities for conservation, with important efforts allocated to their preservation, but the potential effects of global changes on hotspots have so far received relatively little attention. We investigate whether hotspots are quantitatively and qualitatively threatened to the same order of magnitude by the combined effects of global changes. LOCATION: Worldwide, in 34 biodiversity hotspots. METHODS: We quantify (1) the exposure of hotspots to climate change, by estimating the novelty of future climates and the disappearance of extant climates using climate dissimilarity analyses, (2) each hotspot's vulnerability to land modification and degradation by quantifying changes in land‐cover variables over the entire habitat, and (3) the future suitability of distribution ranges of ‘100 of the world's worst invasive alien species’, by characterizing the combined effects of climate and land‐use changes on the future distribution ranges of these species. RESULTS: Our findings show that hotspots may experience an average loss of 31% of their area under analogue climate, with some hotspots more affected than others (e.g. Polynesia–Micronesia). The greatest climate change was projected in low‐latitude hotspots. The hotspots were on average suitable for 17% of the considered invasive species. Hotspots that are mainly islands or groups of islands were disproportionally suitable for a high number of invasive species both currently and in the future. We also showed that hotspots will increase their area of pasture in the future. Finally, combining the three threats, we identified the Atlantic forest, Cape Floristic Region and Polynesia–Micronesia as particularly vulnerable to global changes. MAIN CONCLUSIONS: Given our estimates of hotspot vulnerability to changes, close monitoring is now required to evaluate the biodiversity responses to future changes and to test our projections against observations.
Aim Global changes are predicted to have severe consequences for biodiversity; 34 biodiversity hotspots have become international priorities for conservation, with important efforts allocated to their preservation, but the potential effects of global changes on hotspots have so far received relatively little attention. We investigate whether hotspots are quantitatively and qualitatively threatened to the same order of magnitude by the combined effects of global changes. Location Worldwide, in 34 biodiversity hotspots. Methods We quantify (1) the exposure of hotspots to climate change, by estimating the novelty of future climates and the disappearance of extant climates using climate dissimilarity analyses, (2) each hotspot's vulnerability to land modification and degradation by quantifying changes in land‐cover variables over the entire habitat, and (3) the future suitability of distribution ranges of ‘100 of the world's worst invasive alien species’, by characterizing the combined effects of climate and land‐use changes on the future distribution ranges of these species. Results Our findings show that hotspots may experience an average loss of 31% of their area under analogue climate, with some hotspots more affected than others (e.g. Polynesia–Micronesia). The greatest climate change was projected in low‐latitude hotspots. The hotspots were on average suitable for 17% of the considered invasive species. Hotspots that are mainly islands or groups of islands were disproportionally suitable for a high number of invasive species both currently and in the future. We also showed that hotspots will increase their area of pasture in the future. Finally, combining the three threats, we identified the Atlantic forest, Cape Floristic Region and Polynesia–Micronesia as particularly vulnerable to global changes. Main conclusions Given our estimates of hotspot vulnerability to changes, close monitoring is now required to evaluate the biodiversity responses to future changes and to test our projections against observations.
AimGlobal changes are predicted to have severe consequences for biodiversity; 34 biodiversity hotspots have become international priorities for conservation, with important efforts allocated to their preservation, but the potential effects of global changes on hotspots have so far received relatively little attention. We investigate whether hotspots are quantitatively and qualitatively threatened to the same order of magnitude by the combined effects of global changes. LocationWorldwide, in 34 biodiversity hotspots. MethodsWe quantify (1) the exposure of hotspots to climate change, by estimating the novelty of future climates and the disappearance of extant climates using climate dissimilarity analyses, (2) each hotspot's vulnerability to land modification and degradation by quantifying changes in land-cover variables over the entire habitat, and (3) the future suitability of distribution ranges of 100 of the world's worst invasive alien species', by characterizing the combined effects of climate and land-use changes on the future distribution ranges of these species. ResultsOur findings show that hotspots may experience an average loss of 31% of their area under analogue climate, with some hotspots more affected than others (e.g. Polynesia-Micronesia). The greatest climate change was projected in low-latitude hotspots. The hotspots were on average suitable for 17% of the considered invasive species. Hotspots that are mainly islands or groups of islands were disproportionally suitable for a high number of invasive species both currently and in the future. We also showed that hotspots will increase their area of pasture in the future. Finally, combining the three threats, we identified the Atlantic forest, Cape Floristic Region and Polynesia-Micronesia as particularly vulnerable to global changes. Main conclusionsGiven our estimates of hotspot vulnerability to changes, close monitoring is now required to evaluate the biodiversity responses to future changes and to test our projections against observations.
Aim: Global changes are predicted to have severe consequences for biodiversity; 34 biodiversity hotspots have become international priorities for conservation, with important efforts allocated to their preservation, but the potential effects of global changes on hotspots have so far received relatively little attention. We investigate whether hotspots are quantitatively and qualitatively threatened to the same order of magnitude by the combined effects of global changes. Location: Worldwide, in 34 biodiversity hotspots. Methods: We quantify (1) the exposure of hotspots to climate change, by estimating the novelty of future climates and the disappearance of extant climates using climate dissimilarity analyses, (2) each hotspot's vulnerability to land modification and degradation by quantifying changes in land-cover variables over the entire habitat, and (3) the future suitability of distribution ranges of '100 of the world's worst invasive alien species', by characterizing the combined effects of climate and land-use changes on the future distribution ranges of these species. Results: Our findings show that hotspots may experience an average loss of 31% of their area under analogue climate, with some hotspots more affected than others (e.g. Polynesia-Micronesia). The greatest climate change was projected in lowlatitude hotspots. The hotspots were on average suitable for 17% of the considered invasive species. Hotspots that are mainly islands or groups of islands were disproportionally suitable for a high number of invasive species both currently and in the future. We also showed that hotspots will increase their area of pasture in the future. Finally, combining the three threats, we identified the Atlantic forest, Cape Floristic Region and Polynesia-Micronesia as particularly vulnerable to global changes. Main conclusions: Given our estimates of hotspot vulnerability to changes, close monitoring is now required to evaluate the biodiversity responses to future changes and to test our projections against observations.
Author Leroy, Boris
Leclerc, Camille
Thuiller, Wilfried
Bellard, Céline
Veloz, Samuel
Bakkenes, Michel
Courchamp, Franck
Author_xml – sequence: 1
  fullname: Bellard, Céline
– sequence: 2
  fullname: Leclerc, Camille
– sequence: 3
  fullname: Leroy, Boris
– sequence: 4
  fullname: Bakkenes, Michel
– sequence: 5
  fullname: Veloz, Samuel
– sequence: 6
  fullname: Thuiller, Wilfried
– sequence: 7
  fullname: Courchamp, Franck
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28915467$$DView record in Pascal Francis
https://univ-rennes.hal.science/hal-01374435$$DView record in HAL
BookMark eNqNkltrFDEUxwdpwV588AOIAyLow7RJJrd5rKVulUXRWpW-hDOZzG626WRNZtvutzfrbEcQBQMhyTm__-Fcsp_tdL4zWfYUoyOc1vHM1EeYECIfZXuYcl5IUsqd8U6-P872Y1wghBhlfC8TX1euMwFq62y_zn2b19Y39taEuHnPfR-Xaee9z2fO1-ByPYduZg6z3RZcNE-250F2-fbsy-l5Mf04eXd6Mi00p0IWxLQEaaZbabhuaNMka0ulrqSuKdIlUCwxx0YSSiVAJWVVNVpoIlouGYbyIHs9xJ2DU8tgbyCslQerzk-mamNDuBSUluwWJ_bVwC6D_7EysVc3NmrjHHTGr6LCnJdMiApV_4ESUaUEBE_oiz_QhV-FLhWdKFwRkRIoE_VyS0HU4NoAnbZxzJjICjPKReKOB04HH2MwrdK2h976rg9gncJIbeao0hzVrzn-7sCoeAj6N3Yb_c46s_43qCZnbx4UzwbFIvY-jApaSoEpI8lfDH4be3M_-iFcq1SNYOrbh4m6uHov8JX8pD4n_vnAt-AVzELqweUFQZilHydE6mr5E0jgzQ4
CODEN GEBIFS
CitedBy_id crossref_primary_10_7717_peerj_11673
crossref_primary_10_1111_ddi_13018
crossref_primary_10_1016_j_scitotenv_2023_161917
crossref_primary_10_1038_s41559_021_01411_5
crossref_primary_10_1007_s10530_020_02332_3
crossref_primary_10_1111_ddi_13136
crossref_primary_10_1016_j_pecon_2021_03_008
crossref_primary_10_1038_s41598_023_41121_5
crossref_primary_10_1590_2175_7860202374047
crossref_primary_10_1016_j_soilbio_2022_108931
crossref_primary_10_1016_j_ecolind_2020_106888
crossref_primary_10_1016_j_ecolind_2021_107900
crossref_primary_10_1016_j_jaridenv_2020_104177
crossref_primary_10_1017_S0376892922000212
crossref_primary_10_3390_rs12182948
crossref_primary_10_1016_j_biocon_2023_110069
crossref_primary_10_4000_vertigo_17084
crossref_primary_10_1016_j_gecco_2015_07_012
crossref_primary_10_3389_fpls_2017_01051
crossref_primary_10_1111_icad_12760
crossref_primary_10_1038_s41467_019_12603_w
crossref_primary_10_1016_j_rsase_2024_101155
crossref_primary_10_1111_ibi_13045
crossref_primary_10_1007_s10530_018_1727_y
crossref_primary_10_1080_13416979_2024_2428519
crossref_primary_10_1177_1940082918818401
crossref_primary_10_1038_s41559_025_02664_0
crossref_primary_10_1016_j_ecolind_2024_112540
crossref_primary_10_1007_s12665_016_5826_8
crossref_primary_10_1038_s41598_017_13088_7
crossref_primary_10_1007_s10531_022_02364_2
crossref_primary_10_1093_jmammal_gyac084
crossref_primary_10_3389_fevo_2022_984842
crossref_primary_10_1002_ajb2_16214
crossref_primary_10_1016_j_rsase_2024_101142
crossref_primary_10_1111_jvs_13049
crossref_primary_10_1016_j_gecco_2024_e03154
crossref_primary_10_1038_s41598_019_51107_x
crossref_primary_10_58837_tnh_24_1_263152
crossref_primary_10_1007_s10530_018_1840_y
crossref_primary_10_1007_s13280_020_01353_5
crossref_primary_10_1111_geb_12695
crossref_primary_10_3389_fmars_2019_00109
crossref_primary_10_3390_su15108029
crossref_primary_10_1038_s42003_022_03943_3
crossref_primary_10_1016_j_foreco_2023_121484
crossref_primary_10_1111_geb_70000
crossref_primary_10_1590_0001_3765202420220691
crossref_primary_10_1093_treephys_tpab006
crossref_primary_10_1016_j_geosus_2021_06_004
crossref_primary_10_1002_ece3_4098
crossref_primary_10_1038_s41559_017_0234_3
crossref_primary_10_1111_cla_12155
crossref_primary_10_3390_d17030195
crossref_primary_10_1007_s42991_024_00425_3
crossref_primary_10_1007_s10530_019_01920_2
crossref_primary_10_1016_j_gecco_2019_e00760
crossref_primary_10_1002_ajb2_1499
crossref_primary_10_1007_s10531_024_02857_2
crossref_primary_10_1016_j_ympev_2018_04_016
crossref_primary_10_3897_BDJ_11_e103270
crossref_primary_10_1016_j_pld_2024_06_004
crossref_primary_10_1016_j_jenvman_2021_112917
crossref_primary_10_1007_s11033_021_06822_y
crossref_primary_10_1111_oik_08387
crossref_primary_10_1093_jmammal_gyab099
crossref_primary_10_1111_nph_14042
crossref_primary_10_3389_fevo_2020_00179
crossref_primary_10_3390_su12229454
crossref_primary_10_1016_j_gloplacha_2018_09_002
crossref_primary_10_2984_73_2_2
crossref_primary_10_1016_j_jaridenv_2024_105124
crossref_primary_10_2984_73_2_5
crossref_primary_10_1016_j_biocon_2021_109070
crossref_primary_10_1002_ece3_1833
crossref_primary_10_1016_j_cub_2014_11_067
crossref_primary_10_1016_j_indic_2024_100496
crossref_primary_10_1007_s11056_015_9500_x
crossref_primary_10_3390_cli12110179
crossref_primary_10_1016_j_xplc_2022_100464
crossref_primary_10_1007_s10750_024_05476_8
crossref_primary_10_1016_j_pecon_2021_02_002
crossref_primary_10_1016_j_scitotenv_2023_169208
crossref_primary_10_1002_ece3_7945
crossref_primary_10_1111_nph_16052
crossref_primary_10_1016_j_pecon_2020_12_006
crossref_primary_10_1016_j_dendro_2018_04_004
crossref_primary_10_1007_s10531_021_02270_z
crossref_primary_10_1111_1365_2435_14491
crossref_primary_10_1139_er_2024_0017
crossref_primary_10_1016_j_jaridenv_2016_02_005
crossref_primary_10_1111_ibi_13249
crossref_primary_10_1007_s11160_018_9526_1
crossref_primary_10_1108_IJCCSM_10_2021_0118
crossref_primary_10_1038_s41467_020_18740_x
crossref_primary_10_1016_j_ecoinf_2018_04_004
crossref_primary_10_1016_j_ecolind_2022_109452
crossref_primary_10_1016_j_foreco_2020_118381
crossref_primary_10_3390_su12239953
crossref_primary_10_1007_s11355_024_00621_w
crossref_primary_10_1016_j_biocon_2022_109715
crossref_primary_10_3390_insects12100916
crossref_primary_10_1016_j_biocon_2024_110650
crossref_primary_10_1016_j_scitotenv_2024_173307
crossref_primary_10_1017_S0030605319001388
crossref_primary_10_1038_s41598_020_74684_8
crossref_primary_10_7717_peerj_7612
crossref_primary_10_1111_gcb_13183
crossref_primary_10_1007_s13280_018_1120_1
crossref_primary_10_1371_journal_pone_0148570
crossref_primary_10_1080_02827581_2017_1283049
crossref_primary_10_1371_journal_pone_0138414
crossref_primary_10_35995_jea5010001
crossref_primary_10_4236_oje_2018_87023
crossref_primary_10_1093_botlinnean_boac034
crossref_primary_10_1111_gcb_15159
crossref_primary_10_1016_j_scitotenv_2021_147399
crossref_primary_10_1016_j_ecolind_2020_106509
crossref_primary_10_1371_journal_pone_0277749
crossref_primary_10_1016_j_foreco_2021_119301
crossref_primary_10_1007_s00128_019_02615_z
crossref_primary_10_1016_j_scitotenv_2017_10_065
crossref_primary_10_1016_j_jaridenv_2021_104522
crossref_primary_10_3390_land13060737
crossref_primary_10_1007_s00248_018_1295_9
crossref_primary_10_3390_su11246932
crossref_primary_10_3354_cr01408
crossref_primary_10_1111_geb_12360
crossref_primary_10_1016_j_scitotenv_2024_174622
crossref_primary_10_1111_btp_12981
crossref_primary_10_1017_S0959270920000246
crossref_primary_10_1007_s10530_020_02400_8
crossref_primary_10_1007_s40415_022_00801_8
crossref_primary_10_1007_s10531_015_0972_y
crossref_primary_10_3390_cli9120172
crossref_primary_10_3389_ffgc_2020_00053
crossref_primary_10_1600_036364422X16674053033886
crossref_primary_10_1016_j_biocon_2023_109911
crossref_primary_10_1371_journal_pone_0152495
crossref_primary_10_2478_sg_2021_0010
crossref_primary_10_1007_s11629_020_5983_9
crossref_primary_10_1016_j_mbs_2018_09_005
crossref_primary_10_1111_mam_12322
crossref_primary_10_1016_j_ecoleng_2022_106840
crossref_primary_10_1007_s10113_020_01686_7
crossref_primary_10_1038_s41893_025_01508_w
crossref_primary_10_1016_j_biocon_2023_110213
crossref_primary_10_1016_j_aquabot_2020_103293
crossref_primary_10_3389_fagro_2022_825087
crossref_primary_10_1093_conphys_coz070
crossref_primary_10_1007_s11629_023_8258_4
crossref_primary_10_3389_fpls_2019_00767
crossref_primary_10_1007_s10530_022_02771_0
crossref_primary_10_1016_j_scitotenv_2017_03_120
crossref_primary_10_1093_forestry_cpae031
crossref_primary_10_1111_geb_13716
crossref_primary_10_1111_ddi_13776
crossref_primary_10_1111_ddi_12686
crossref_primary_10_1016_j_landurbplan_2019_02_008
crossref_primary_10_3390_plants12102017
crossref_primary_10_1016_j_pld_2023_10_001
crossref_primary_10_1038_s41598_023_34236_2
crossref_primary_10_1111_cobi_13405
crossref_primary_10_1007_s11258_021_01169_7
crossref_primary_10_1002_ehs2_1242
crossref_primary_10_1002_ajp_23557
crossref_primary_10_1002_pan3_10765
crossref_primary_10_1016_j_scitotenv_2024_171296
crossref_primary_10_1111_ddi_13425
crossref_primary_10_1111_geb_13942
crossref_primary_10_1111_ddi_13303
crossref_primary_10_1371_journal_pone_0192249
crossref_primary_10_1007_s10530_021_02550_3
crossref_primary_10_1016_j_ecoinf_2024_102941
crossref_primary_10_1007_s10980_018_0613_4
crossref_primary_10_3390_su142316272
crossref_primary_10_1002_ece3_70750
crossref_primary_10_1590_2179_8087_114417
crossref_primary_10_1016_j_gecco_2025_e03499
crossref_primary_10_1659_MRD_JOURNAL_D_16_00093_1
crossref_primary_10_1002_ecs2_4589
crossref_primary_10_1590_1676_0611_bn_2023_1520
crossref_primary_10_1007_s13199_021_00775_3
crossref_primary_10_1007_s10265_018_1062_5
crossref_primary_10_1007_s10661_024_12316_8
crossref_primary_10_1002_ajp_23562
crossref_primary_10_1007_s00468_024_02508_7
crossref_primary_10_1017_S1742170522000229
crossref_primary_10_3389_fevo_2024_1358914
crossref_primary_10_1007_s10841_020_00219_1
crossref_primary_10_1016_j_jnc_2025_126874
crossref_primary_10_3897_BDJ_12_e129360
crossref_primary_10_1016_j_actao_2018_01_001
crossref_primary_10_1371_journal_pbio_2005987
crossref_primary_10_1007_s10661_019_7685_8
crossref_primary_10_1016_j_ecoinf_2022_101813
crossref_primary_10_1016_j_quascirev_2021_107005
crossref_primary_10_3390_meteorology3030014
crossref_primary_10_1111_mam_12378
crossref_primary_10_3389_fpls_2022_817730
crossref_primary_10_1016_j_scienta_2021_109935
crossref_primary_10_1590_1676_0611_bn_2016_0294
crossref_primary_10_3390_d14080688
crossref_primary_10_1007_s10584_020_02677_7
crossref_primary_10_1002_fee_1321
crossref_primary_10_1007_s10745_022_00352_2
crossref_primary_10_1002_ecs2_1729
crossref_primary_10_1007_s00468_019_01919_1
crossref_primary_10_1007_s40502_021_00616_x
crossref_primary_10_1080_26395916_2023_2216804
crossref_primary_10_1016_j_envexpbot_2019_103872
crossref_primary_10_1016_j_gloplacha_2016_12_007
crossref_primary_10_1016_j_scitotenv_2020_144234
crossref_primary_10_1016_j_gecco_2022_e02246
crossref_primary_10_1016_j_jnc_2021_126094
crossref_primary_10_1080_14772000_2020_1783715
crossref_primary_10_5209_mbot_76648
crossref_primary_10_1016_j_biocon_2023_110257
crossref_primary_10_1007_s00468_019_01864_z
crossref_primary_10_1016_j_biocon_2020_108579
crossref_primary_10_1016_j_gecco_2021_e01847
crossref_primary_10_1007_s10531_015_0980_y
crossref_primary_10_1111_gcb_16629
crossref_primary_10_1186_s12870_025_06165_x
crossref_primary_10_1007_s11027_017_9768_6
crossref_primary_10_3390_d11040062
crossref_primary_10_36868_IJCS_2023_04_18
crossref_primary_10_1007_s10344_025_01899_3
crossref_primary_10_1111_ecog_04564
crossref_primary_10_1111_jfb_15649
crossref_primary_10_1016_j_ecoinf_2021_101357
crossref_primary_10_32800_abc_2024_47_0101
crossref_primary_10_1016_j_gecco_2014_12_008
crossref_primary_10_1080_11263504_2020_1762782
crossref_primary_10_1016_j_ufug_2019_126465
crossref_primary_10_3390_ijerph20032689
crossref_primary_10_1007_s11056_018_9626_8
crossref_primary_10_1007_s13364_023_00672_8
crossref_primary_10_1007_s11258_021_01189_3
crossref_primary_10_1371_journal_pone_0134665
crossref_primary_10_1088_1748_9326_ac6436
crossref_primary_10_1111_pce_12859
crossref_primary_10_1002_ece3_5931
crossref_primary_10_1016_j_biocon_2016_06_031
crossref_primary_10_1002_ece3_10374
crossref_primary_10_1016_j_pecon_2018_04_001
crossref_primary_10_3390_su132111658
crossref_primary_10_1016_j_dendro_2018_12_004
crossref_primary_10_1016_j_foreco_2020_118656
crossref_primary_10_1111_aec_12849
crossref_primary_10_1002_aqc_2967
crossref_primary_10_1007_s10113_022_01904_4
crossref_primary_10_1016_j_jafrearsci_2022_104502
crossref_primary_10_1590_0102_33062019abb0173
crossref_primary_10_1038_s41467_019_10775_z
crossref_primary_10_1016_j_jnc_2025_126835
crossref_primary_10_32615_ps_2021_013
crossref_primary_10_1007_s10531_018_1615_x
crossref_primary_10_1007_s40626_023_00294_0
crossref_primary_10_1016_j_biocon_2025_111053
crossref_primary_10_1007_s10841_024_00551_w
crossref_primary_10_5194_we_17_69_2017
crossref_primary_10_1080_27658511_2024_2314399
crossref_primary_10_1007_s10531_016_1280_x
crossref_primary_10_1016_j_biocon_2023_110162
crossref_primary_10_1016_j_pecon_2019_02_001
crossref_primary_10_1371_journal_pone_0151545
crossref_primary_10_1016_j_regsus_2020_08_001
crossref_primary_10_1590_2236_8906_74_2020
crossref_primary_10_1155_2023_7628262
crossref_primary_10_7717_peerj_6479
crossref_primary_10_1007_s40415_024_00993_1
crossref_primary_10_1111_ddi_13007
crossref_primary_10_1590_1677_941x_abb_2022_0084
crossref_primary_10_1016_j_ecoinf_2024_102564
crossref_primary_10_1007_s42974_024_00196_4
crossref_primary_10_1088_1748_9326_ad64eb
crossref_primary_10_3389_fevo_2020_571587
crossref_primary_10_1007_s10980_019_00778_y
crossref_primary_10_7717_peerj_13464
crossref_primary_10_1111_aje_13111
crossref_primary_10_1126_sciadv_abe5582
crossref_primary_10_1007_s13280_015_0683_3
crossref_primary_10_1093_aob_mcw093
crossref_primary_10_1093_biosci_biab019
crossref_primary_10_1016_j_gecco_2025_e03515
crossref_primary_10_1007_s42965_022_00264_8
Cites_doi 10.1111/j.1472-4642.2009.00633.x
10.1111/j.1365-2664.2006.01214.x
10.1111/ddi.12149
10.1111/j.0014-3820.2006.tb01872.x
10.1111/j.1472-4642.2010.00647.x
10.1111/j.1523-1739.2006.00364.x
10.1111/j.1472-4642.2011.00876.x
10.1073/pnas.0606292104
10.1016/j.tree.2012.07.013
10.1146/annurev-ecolsys-102209-144628
10.1111/j.1365-2486.2011.02635.x
10.2307/3546614
10.1111/j.1365-2486.2005.00980.x
10.1111/j.1461-0248.2011.01736.x
10.1641/0006-3568(2004)054[0677:EOIAPO]2.0.CO;2
10.1007/s10021-009-9229-5
10.1080/01431160412331291297
10.1073/pnas.0901639106
10.1038/35002501
10.1111/j.1461-0248.2007.01060.x
10.1016/j.biocon.2007.07.011
10.1111/j.2006.0906-7590.04272.x
10.1890/0012-9658(2000)081[3305:IOEARF]2.0.CO;2
10.1016/j.tree.2006.09.010
10.1046/j.1365-2745.2003.00823.x
10.1046/j.1523-1739.2002.00530.x
10.1126/science.1215933
10.1016/j.tree.2011.02.006
10.1016/j.biocon.2006.08.013
10.1038/nature10574
10.1111/j.1472-4642.2010.00652.x
10.1017/S0376892997000088
10.1111/j.1600-0587.2008.05742.x
10.1111/gcb.12344
10.1073/pnas.1007217108
10.1016/j.tree.2007.10.001
10.1038/nature03073
10.1111/gcb.12325
10.1002/joc.1276
10.1111/j.1365-2664.2009.01695.x
ContentType Journal Article
Copyright Copyright © 2014 John Wiley & Sons Ltd.
2014 John Wiley & Sons Ltd
2015 INIST-CNRS
Copyright © 2014 John Wiley & Sons Ltd
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Copyright © 2014 John Wiley & Sons Ltd.
– notice: 2014 John Wiley & Sons Ltd
– notice: 2015 INIST-CNRS
– notice: Copyright © 2014 John Wiley & Sons Ltd
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID FBQ
BSCLL
AAYXX
CITATION
IQODW
7QG
7SN
7SS
7ST
7U6
C1K
7S9
L.6
1XC
DOI 10.1111/geb.12228
DatabaseName AGRIS
Istex
CrossRef
Pascal-Francis
Animal Behavior Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Sustainability Science Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
Entomology Abstracts
Ecology Abstracts
Environment Abstracts
Sustainability Science Abstracts
Animal Behavior Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA

Entomology Abstracts
Ecology Abstracts


Database_xml – sequence: 1
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Ecology
Environmental Sciences
EISSN 1466-8238
1466-822X
EndPage 1386
ExternalDocumentID oai_HAL_hal_01374435v1
3479644841
28915467
10_1111_geb_12228
GEB12228
43871452
ark_67375_WNG_SZJ71Z8Q_R
US201500077627
Genre article
GrantInformation_xml – fundername: French Agence Nationale de la Recherche (ANR)
– fundername: Service du Patrimoine Naturel
– fundername: CNRS
– fundername: European Research Council under the European Community's Seven Framework Programme FP7/2007‐2013
  funderid: 281422
– fundername: Biodiversa Eranet FFII Project
GroupedDBID -~X
.3N
.GA
.Y3
10A
1OC
29I
31~
33P
4.4
50Y
51W
51X
52M
52N
52O
52P
52S
52T
52W
52X
5GY
5HH
5LA
5VS
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAEVG
AAHHS
AAHKG
AAISJ
AAKGQ
AANLZ
AASGY
AAXRX
AAZKR
ABBHK
ABCQN
ABCUV
ABEML
ABHUG
ABLJU
ABPLY
ABPPZ
ABPTK
ABPVW
ABTLG
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACPOU
ACPRK
ACSCC
ACSTJ
ACXBN
ACXME
ACXQS
ADAWD
ADBBV
ADDAD
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADULT
ADXAS
ADZLD
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AESBF
AEUPB
AEUQT
AEUYR
AFAZZ
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFVGU
AFZJQ
AGJLS
AGUYK
AIRJO
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ANHSF
ASPBG
ATUGU
AUFTA
AVWKF
AZFZN
BDRZF
BFHJK
BMNLL
BMXJE
BRXPI
BY8
CAG
CBGCD
COF
CS3
CUYZI
CWIXF
D-E
D-F
DCZOG
DEVKO
DOOOF
DPXWK
DR2
DRFUL
DRSTM
DWIUU
EBS
ECGQY
EJD
EQZMY
ESX
F00
F01
F04
FBQ
FEDTE
G-S
GODZA
GTFYD
HF~
HGD
HQ2
HTVGU
HVGLF
HZI
IHE
IX1
JAAYA
JBMMH
JBS
JEB
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSODD
JST
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N9A
P2W
P4D
Q11
QB0
ROL
RX1
SA0
SUPJJ
TN5
UB1
UPT
VQP
W99
WIH
WIK
WQJ
WRC
WXSBR
XG1
ZZTAW
~KM
0R~
AAHBH
ABXSQ
ADACV
AHBTC
AHXOZ
AILXY
AITYG
AQVQM
BSCLL
HGLYW
IPSME
OIG
AAHQN
AAMMB
AAMNL
AANHP
AAYCA
ABSQW
ACHIC
ACRPL
ACYXJ
ADNMO
AEFGJ
AEYWJ
AFWVQ
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
ALVPJ
AAYXX
AGHNM
CITATION
IQODW
7QG
7SN
7SS
7ST
7U6
C1K
7S9
L.6
1XC
ID FETCH-LOGICAL-c6478-2ef20c5cf8e6cd4dd647f48c98cb40c3a418161e82448aa98899dc7c27f6851a3
IEDL.DBID DR2
ISSN 1466-822X
IngestDate Wed Aug 13 07:45:20 EDT 2025
Fri Jul 11 18:27:25 EDT 2025
Thu Jul 10 23:28:18 EDT 2025
Fri Jul 25 03:57:43 EDT 2025
Wed Apr 02 07:16:17 EDT 2025
Tue Jul 01 01:46:05 EDT 2025
Thu Apr 24 23:00:56 EDT 2025
Wed Jan 22 16:21:53 EST 2025
Thu Jul 03 22:44:41 EDT 2025
Wed Oct 30 09:56:36 EDT 2024
Wed Dec 27 19:02:05 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords Biological invasion
Biodiversity hotspots
spatial prioritization
Hot spot
Conservation
Biogeography
land-use change
Ecology
Vulnerability
Biodiversity
biological invasions
Land use
Dynamical climatology
Climate change
Global change
Planetary scale
Environmental monitoring
Environmental protection
conservation
future
area relationships
biological invasion
species distribution models
responses
impacts
climate-change
distributions
communities
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c6478-2ef20c5cf8e6cd4dd647f48c98cb40c3a418161e82448aa98899dc7c27f6851a3
Notes http://dx.doi.org/10.1111/geb.12228
istex:E07DB1F4D03EB3CFEC7B46DD6CD814C41607966F
ArticleID:GEB12228
CNRS
Biodiversa Eranet FFII Project
Figure S1 Methodological choice of the threshold. Figure S2 Geographical distance (km) to the closest analogue climatic conditions between the current and future periods for the 21 continental hotspots for (a) the A1B emission scenario and (b) the B2A scenario. Figure S3 Boxplots of TSS and ROC values for the ensemble forecast projected model. Figure S4 Number of invasive alien species per pixel in the 34 hotspots compared to the rest of the world, for both current and future periods (A) A1 scenario on the left (B) B2 scenario on the right. Figure S5 Combined occurrences of 99 of 'the world's worst invasive species' across the world. Table S1 Number of endemic species in each of 34 biodiversity hotspots. Table S2 Environmental variables. Table S3 List of the 99 of 'the world's worst invasive species' with data sources and number of occurrences that were checked for each species. Table S4 Standardized Euclidian distance thresholds (SEDt) calculated for each hotspot. Table S5 Threatened endemic biodiversity due to climate change. Table S6 Kolmogorov-Smirnov test results comparing the distributions of number of endemic species affected by climate changes for each value of z. Table S7 Table of the rank for the 34 different hotspots according to number of endemic plant species for each hotspot (end.), the proportion of area protected by IUCN classification (I to IV) (PA), the percentage of climate loss (LCC), the potential number of invasive alien species in the future (IAS) and the percentage of future artificial land (LU) under A1B emission scenario. Supplementary text S1 Methodological details about species distribution models.
French Agence Nationale de la Recherche (ANR)
European Research Council under the European Community's Seven Framework Programme FP7/2007-2013 - No. 281422
Service du Patrimoine Naturel
ark:/67375/WNG-SZJ71Z8Q-R
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-7686-4302
0000-0003-2012-1160
0000-0001-5830-1787
0000-0002-5388-5274
0000-0001-7605-4548
PQID 1619271373
PQPubID 1066347
PageCount 11
ParticipantIDs hal_primary_oai_HAL_hal_01374435v1
proquest_miscellaneous_1663577909
proquest_miscellaneous_1627985176
proquest_journals_1619271373
pascalfrancis_primary_28915467
crossref_citationtrail_10_1111_geb_12228
crossref_primary_10_1111_geb_12228
wiley_primary_10_1111_geb_12228_GEB12228
jstor_primary_43871452
istex_primary_ark_67375_WNG_SZJ71Z8Q_R
fao_agris_US201500077627
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2014
PublicationDateYYYYMMDD 2014-12-01
PublicationDate_xml – month: 12
  year: 2014
  text: December 2014
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Global ecology and biogeography
PublicationTitleAlternate Global Ecology and Biogeography
PublicationYear 2014
Publisher Blackwell Science
Blackwell Publishing Ltd
John Wiley & Sons Ltd
Blackwell
Wiley Subscription Services, Inc
Wiley
Publisher_xml – name: Blackwell Science
– name: Blackwell Publishing Ltd
– name: John Wiley & Sons Ltd
– name: Blackwell
– name: Wiley Subscription Services, Inc
– name: Wiley
References Conservation International (2011) Hotspots. Conservation International, Arlington, VA. Available at: http://www.conservation.org/where/priority_areas/hotspots/Pages/hotspots_main.aspx (accessed 2 August 2012).
Wiens, J.A., Stralberg, D., Jongsomjit, D., Howell, C.A. & Snyder, M.A. (2009) Niches, models, and climate change: assessing the assumptions and uncertainties. Proceedings of the National Academy of Sciences of the United States of America, 106, 19729-19736.
Allouche, O., Tsoar, A. & Kadmon, R. (2006) Assessing the accuracy of species distribution models?: prevalence, kappa and the true skill statistic (TSS). Journal of Applied Ecology, 46, 1223-1232.
Lorenzen, E.D., Nogués-Bravo, D., Orlando, L. et al. (2011) Species-specific responses of Late Quaternary megafauna to climate and humans. Nature, 479, 359-364.
Araújo, M.B. & New, M. (2007) Ensemble forecasting of species distributions. Trends in Ecology and Evolution, 22, 42-47.
Gassó, N., Pyšek, P., Vilà, M. & Williamson, M. (2010) Spreading to a limit: the time required for a neophyte to reach its maximum range. Diversity and Distributions, 16, 310-311.
Lowe, S., Browne, M., Boudjelas, S. & De Poorter, M. (2000) 100 of the world's worst invasive alien species: a selection from the Global Invasive Species Database. Invasive Species Specialist Group, Auckland, New Zealand.
Williams, J.W., Jackson, S.T. & Kutzbach, J.E. (2007) Projected distributions of novel and disappearing climates by 2100 AD. Proceedings of the National Academy of Sciences of the United States of America, 104, 5738-5742.
Bellard, C., Thuiller, W., Leroy, B., Genovesi, P., Bakkenes, M. & Courchamp, F. (2013) Will climate change promote future invasions? Global Change Biology, 19, 3740-3748.
Gallien, L., Münkemüller, T., Albert, C.H., Boulangeat, I. & Thuiller, W. (2010) Predicting potential distributions of invasive species: where to go from here? Diversity and Distributions, 16, 331-342.
Harte, J. & Kinzig, A.P. (1997) On the implications of species-area relationships for endemism, spatial turnover, and food web patterns. Oikos, 80, 417-427.
Simberloff, D., Martin, J.-L., Genovesi, P., Maris, V., Wardle, D.A., Aronson, J., Courchamp, F., Galil, B., García-Berthou, E., Pascal, M., Pyšek, P., Sousa, R., Tabacchi, E. & Vilà, M. (2013) Impacts of biological invasions: what's what and the way forward. Trends in Ecology and Evolution, 28, 58-66.
Alkemade, R., van Oorschot, M., Miles, L., Nellemann, C., Bakkenes, M. & ten Brink, B. (2009) GLOBIO3: a framework to investigate options for reducing global terrestrial biodiversity loss. Ecosystems, 12, 374-390.
Estes, L.D., Beukes, H., Bradley, B.A., Debats, S.R., Oppenheimer, M., Ruane, A.C., Schulze, R. & Tadross, M. (2013) Projected climate impacts to South African maize and wheat production in 2055: a comparison of empirical and mechanistic modeling approaches. Global Change Biology, 19, 3762-3774.
Petitpierre, B., Kueffer, C., Broennimann, O., Randin, C., Daehler, C. & Guisan, A. (2012) Climatic niche shifts are rare among terrestrial plant invaders. Science, 335, 1344-1348.
Beaumont, L.J., Pitman, A., Perkins, S., Zimmermann, N.E., Yoccoz, N.G. & Thuiller, W. (2010) Impacts of climate change on the world's most exceptional ecoregions. Proceedings of the National Academy of Sciences of the United States of America, 108, 2306-2311.
Thomas, C.D. (2011) Translocation of species, climate change, and the end of trying to recreate past ecological communities. Trends in Ecology and Evolution, 26, 216-221.
Mittermeier, R.A., Gil, P.R., Hoffman, M., Pilgrim, J., Brooks, T., Mittermeier, C.G., Lamoreux, J. & da Fonseca, G.A.B. (2004) Hotspots revisited: earth's biologically richest and most endangered terrestrial ecoregions. University of Chicago Press, Chicago, IL.
Grigulis, K., Lavorel, S., Davies, I.D., Dossantos, A., Lloret, F. & Vilà, M. (2005) Landscape-scale positive feedbacks between fire and expansion of the large tussock grass, Ampelodesmos mauritanica in Catalan shrublands. Global Change Biology, 11, 1042-1053.
Bergl, R.A., Oates, J.F. & Fotso, R. (2007) Distribution and protected area coverage of endemic taxa in West Africa's Biafran forests and highlands. Biological Conservation, 134, 195-208.
Veloz, S.D., Williams, J.W., Blois, J.L., He, F., Otto-Bliesner, B. & Liu, Z.-Y. (2012) No-analog climates and shifting realized niches during the late quaternary: implications for 21st-century predictions by species distribution models. Global Change Biology, 18, 1698-1713.
Brooks, T.M., Mittermeier, R.A., Mittermeier, C.G., Da Fonseca, G.A.B., Rylands, A.B., Konstant, W.R., Flick, P., Pilgrim, J., Oldfield, S., Magin, G. & Hilton-Taylor, C. (2002) Habitat loss and extinction in the hotspots of biodiversity. Conservation Biology, 16, 909-923.
Bellard, C., Bertelsmeier, C., Leadley, P., Thuiller, W. & Courchamp, F. (2012) Impacts of climate change on the future of biodiversity. Ecology Letters, 15, 365-377.
Brooks, M.L., D'Antonio, C.M., Richardson, D.M., Grace, J.B., Keeley, J.E., DiTomaso, J.M., Hobbs, R.J., Pellant, M. & Pyke, D. (2004) Effects of invasive alien plants on fire regimes. BioScience, 54, 677-688.
Bacon, S.J., Aebi, A., Calanca, P. & Bacher, S. (2013) Quarantine arthropod invasions in Europe: the role of climate, hosts and propagule pressure. Diversity and Distributions, 20, 84-94.
Bartholomé, E. & Belward, A.S. (2005) GLC2000: a new approach to global land cover mapping from Earth observation data. International Journal of Remote Sensing, 26, 1959-1977.
Oswald, W.W., Brubaker, L.B., Hu, F.S. & Gavin, D.G. (2003) Pollen-vegetation calibration for tundra communities in the Arctic Foothills, northern Alaska. Journal of Ecology, 91, 1022-1033.
R Core Team (2012) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
Broennimann, O., Treier, U.A., Müller-Schärer, H., Thuiller, W., Peterson, A.T. & Guisan, A. (2007) Evidence of climatic niche shift during biological invasion. Ecology Letters, 10, 701-709.
Hodgson, J.A., Thomas, C.D., Wintle, B.A. & Moilanen, A. (2009) Climate change, connectivity and conservation decision making: back to basics. Journal of Applied Ecology, 46, 964-969.
Myers, N., Mittermeier, R.A., Mittermeier, C.G., da Fonseca, G.A.B. & Kent, J. (2000) Biodiversity hotspots for conservation priorities. Nature, 403, 853-858.
Parmesan, C. (2006) Ecological and evolutionary responses to recent climate change. Annual Review of Ecology, Evolution, and Systematics, 37, 637-669.
Horner-Devine, M.C., Lage, M., Hughes, J.B. & Bohannan, B.J.M. (2004) A taxa-area relationship for bacteria. Nature, 432, 750-753.
Pressey, R.L., Cabeza, M., Watts, M.E., Cowling, R.M. & Wilson, K.A. (2007) Conservation planning in a changing world. Trends in Ecology and Evolution, 22, 583-592.
Thuiller, W., Lafourcade, B., Engler, R. & Araújo, M.B. (2009) BIOMOD - a platform for ensemble forecasting of species distributions. Ecography, 32, 369-373.
McGeoch, M.A., Butchart, S.H.M., Spear, D., Marais, E., Kleynhans, E.J., Symes, A., Chanson, J. & Hoffmann, M. (2010) Global indicators of biological invasion: species numbers, biodiversity impact and policy responses. Diversity and Distributions, 16, 95-108.
IPCC Core Writing Team, Pachaury, R.K. & Reisinger, A. (2007) Contribution of working groups I, II, and III to the fourth assessment report of the intergovernmental panel on climate change. IPCC, Geneva, Switzerland.
Rosenzweig, M.L. (1995) Species diversity in space and time. Cambridge University Press, Cambridge, UK.
Malcolm, J.R., Liu, C.-R., Neilson, R.P., Hansen, L. & Hannah, L. (2006) Global warming and extinctions of endemic species from biodiversity hotspots. Conservation Biology, 20, 538-548.
Kinzig, A.P. & Harte, J. (2000) Implications of endemics-area relationships for estimates of species extinction. Ecology, 81, 3305-3311.
Lavergne, S., Mouquet, N., Thuiller, W. & Ronce, O. (2010) Biodiversity and climate change: integrating evolutionary and ecological responses of species and communities. Annual Review of Ecology, Evolution, and Systematics, 41, 321-350.
Hof, A.R., Jansson, R. & Nilsson, C. (2012) How biotic interactions may alter future predictions of species distributions: future threats to the persistence of the arctic fox in Fennoscandia. Diversity and Distributions, 18, 554-562.
Jiménez-Valverde, A. (2011) Insights into the area under the receiver operating characteristic curve (AUC) as a discrimination measure in species distribution modelling. Global Ecology and Biogeography, 5, 498-507.
Fielding, A.H. & Bell, J.F. (1997) A review of methods for the assessment of prediction errors in conservation presence/absence models. Environmental Conservation, 24, 38-49.
Murdoch, W., Polasky, S., Wilson, K.A., Possingham, H.P., Kareiva, P. & Shaw, R. (2007) Maximizing return on investment in conservation. Biological Conservation, 139, 375-388.
Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G. & Jarvis, A. (2005) Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25, 1965-1978.
2002; 16
1997; 80
2011; 479
2007; 104
2009; 46
2010; 16
2013; 28
2012
2010; 108
2011
2013; 20
1997; 24
2006; 37
2007
1995
2012; 18
2004
2012; 15
2005; 26
2007; 10
2011; 5
2010; 41
2005; 25
2009; 12
2013; 19
2004; 54
2007; 134
2006; 20
2003; 91
2009; 32
2004; 432
2007; 139
2006; 46
2000
2000; 403
2000; 81
2011; 26
2012; 335
2007; 22
2005; 11
2009; 106
e_1_2_6_32_1
e_1_2_6_10_1
e_1_2_6_30_1
Conservation International (e_1_2_6_14_1) 2011
e_1_2_6_19_1
Lowe S. (e_1_2_6_31_1) 2000
Schmitt C.B. (e_1_2_6_43_1) 2012
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_35_1
e_1_2_6_11_1
e_1_2_6_12_1
IPCC Core Writing Team (e_1_2_6_26_1) 2007
e_1_2_6_33_1
e_1_2_6_17_1
Cowling R.M. (e_1_2_6_15_1) 1995
e_1_2_6_18_1
Mittermeier R.A. (e_1_2_6_34_1) 2004
e_1_2_6_39_1
e_1_2_6_38_1
e_1_2_6_16_1
e_1_2_6_37_1
R Core Team (e_1_2_6_41_1) 2012
e_1_2_6_42_1
e_1_2_6_21_1
e_1_2_6_20_1
e_1_2_6_40_1
e_1_2_6_9_1
e_1_2_6_8_1
e_1_2_6_5_1
e_1_2_6_4_1
e_1_2_6_7_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_3_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_22_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_46_1
Jiménez‐Valverde A. (e_1_2_6_27_1) 2011; 5
e_1_2_6_47_1
References_xml – reference: Araújo, M.B. & New, M. (2007) Ensemble forecasting of species distributions. Trends in Ecology and Evolution, 22, 42-47.
– reference: Jiménez-Valverde, A. (2011) Insights into the area under the receiver operating characteristic curve (AUC) as a discrimination measure in species distribution modelling. Global Ecology and Biogeography, 5, 498-507.
– reference: Harte, J. & Kinzig, A.P. (1997) On the implications of species-area relationships for endemism, spatial turnover, and food web patterns. Oikos, 80, 417-427.
– reference: Hof, A.R., Jansson, R. & Nilsson, C. (2012) How biotic interactions may alter future predictions of species distributions: future threats to the persistence of the arctic fox in Fennoscandia. Diversity and Distributions, 18, 554-562.
– reference: Horner-Devine, M.C., Lage, M., Hughes, J.B. & Bohannan, B.J.M. (2004) A taxa-area relationship for bacteria. Nature, 432, 750-753.
– reference: Simberloff, D., Martin, J.-L., Genovesi, P., Maris, V., Wardle, D.A., Aronson, J., Courchamp, F., Galil, B., García-Berthou, E., Pascal, M., Pyšek, P., Sousa, R., Tabacchi, E. & Vilà, M. (2013) Impacts of biological invasions: what's what and the way forward. Trends in Ecology and Evolution, 28, 58-66.
– reference: Malcolm, J.R., Liu, C.-R., Neilson, R.P., Hansen, L. & Hannah, L. (2006) Global warming and extinctions of endemic species from biodiversity hotspots. Conservation Biology, 20, 538-548.
– reference: Pressey, R.L., Cabeza, M., Watts, M.E., Cowling, R.M. & Wilson, K.A. (2007) Conservation planning in a changing world. Trends in Ecology and Evolution, 22, 583-592.
– reference: Thomas, C.D. (2011) Translocation of species, climate change, and the end of trying to recreate past ecological communities. Trends in Ecology and Evolution, 26, 216-221.
– reference: Veloz, S.D., Williams, J.W., Blois, J.L., He, F., Otto-Bliesner, B. & Liu, Z.-Y. (2012) No-analog climates and shifting realized niches during the late quaternary: implications for 21st-century predictions by species distribution models. Global Change Biology, 18, 1698-1713.
– reference: Alkemade, R., van Oorschot, M., Miles, L., Nellemann, C., Bakkenes, M. & ten Brink, B. (2009) GLOBIO3: a framework to investigate options for reducing global terrestrial biodiversity loss. Ecosystems, 12, 374-390.
– reference: Allouche, O., Tsoar, A. & Kadmon, R. (2006) Assessing the accuracy of species distribution models?: prevalence, kappa and the true skill statistic (TSS). Journal of Applied Ecology, 46, 1223-1232.
– reference: Lorenzen, E.D., Nogués-Bravo, D., Orlando, L. et al. (2011) Species-specific responses of Late Quaternary megafauna to climate and humans. Nature, 479, 359-364.
– reference: Mittermeier, R.A., Gil, P.R., Hoffman, M., Pilgrim, J., Brooks, T., Mittermeier, C.G., Lamoreux, J. & da Fonseca, G.A.B. (2004) Hotspots revisited: earth's biologically richest and most endangered terrestrial ecoregions. University of Chicago Press, Chicago, IL.
– reference: Hodgson, J.A., Thomas, C.D., Wintle, B.A. & Moilanen, A. (2009) Climate change, connectivity and conservation decision making: back to basics. Journal of Applied Ecology, 46, 964-969.
– reference: IPCC Core Writing Team, Pachaury, R.K. & Reisinger, A. (2007) Contribution of working groups I, II, and III to the fourth assessment report of the intergovernmental panel on climate change. IPCC, Geneva, Switzerland.
– reference: Lavergne, S., Mouquet, N., Thuiller, W. & Ronce, O. (2010) Biodiversity and climate change: integrating evolutionary and ecological responses of species and communities. Annual Review of Ecology, Evolution, and Systematics, 41, 321-350.
– reference: Gallien, L., Münkemüller, T., Albert, C.H., Boulangeat, I. & Thuiller, W. (2010) Predicting potential distributions of invasive species: where to go from here? Diversity and Distributions, 16, 331-342.
– reference: Bellard, C., Bertelsmeier, C., Leadley, P., Thuiller, W. & Courchamp, F. (2012) Impacts of climate change on the future of biodiversity. Ecology Letters, 15, 365-377.
– reference: Wiens, J.A., Stralberg, D., Jongsomjit, D., Howell, C.A. & Snyder, M.A. (2009) Niches, models, and climate change: assessing the assumptions and uncertainties. Proceedings of the National Academy of Sciences of the United States of America, 106, 19729-19736.
– reference: Conservation International (2011) Hotspots. Conservation International, Arlington, VA. Available at: http://www.conservation.org/where/priority_areas/hotspots/Pages/hotspots_main.aspx (accessed 2 August 2012).
– reference: Oswald, W.W., Brubaker, L.B., Hu, F.S. & Gavin, D.G. (2003) Pollen-vegetation calibration for tundra communities in the Arctic Foothills, northern Alaska. Journal of Ecology, 91, 1022-1033.
– reference: Bellard, C., Thuiller, W., Leroy, B., Genovesi, P., Bakkenes, M. & Courchamp, F. (2013) Will climate change promote future invasions? Global Change Biology, 19, 3740-3748.
– reference: Rosenzweig, M.L. (1995) Species diversity in space and time. Cambridge University Press, Cambridge, UK.
– reference: Broennimann, O., Treier, U.A., Müller-Schärer, H., Thuiller, W., Peterson, A.T. & Guisan, A. (2007) Evidence of climatic niche shift during biological invasion. Ecology Letters, 10, 701-709.
– reference: Brooks, M.L., D'Antonio, C.M., Richardson, D.M., Grace, J.B., Keeley, J.E., DiTomaso, J.M., Hobbs, R.J., Pellant, M. & Pyke, D. (2004) Effects of invasive alien plants on fire regimes. BioScience, 54, 677-688.
– reference: R Core Team (2012) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
– reference: Fielding, A.H. & Bell, J.F. (1997) A review of methods for the assessment of prediction errors in conservation presence/absence models. Environmental Conservation, 24, 38-49.
– reference: Grigulis, K., Lavorel, S., Davies, I.D., Dossantos, A., Lloret, F. & Vilà, M. (2005) Landscape-scale positive feedbacks between fire and expansion of the large tussock grass, Ampelodesmos mauritanica in Catalan shrublands. Global Change Biology, 11, 1042-1053.
– reference: McGeoch, M.A., Butchart, S.H.M., Spear, D., Marais, E., Kleynhans, E.J., Symes, A., Chanson, J. & Hoffmann, M. (2010) Global indicators of biological invasion: species numbers, biodiversity impact and policy responses. Diversity and Distributions, 16, 95-108.
– reference: Petitpierre, B., Kueffer, C., Broennimann, O., Randin, C., Daehler, C. & Guisan, A. (2012) Climatic niche shifts are rare among terrestrial plant invaders. Science, 335, 1344-1348.
– reference: Bartholomé, E. & Belward, A.S. (2005) GLC2000: a new approach to global land cover mapping from Earth observation data. International Journal of Remote Sensing, 26, 1959-1977.
– reference: Brooks, T.M., Mittermeier, R.A., Mittermeier, C.G., Da Fonseca, G.A.B., Rylands, A.B., Konstant, W.R., Flick, P., Pilgrim, J., Oldfield, S., Magin, G. & Hilton-Taylor, C. (2002) Habitat loss and extinction in the hotspots of biodiversity. Conservation Biology, 16, 909-923.
– reference: Lowe, S., Browne, M., Boudjelas, S. & De Poorter, M. (2000) 100 of the world's worst invasive alien species: a selection from the Global Invasive Species Database. Invasive Species Specialist Group, Auckland, New Zealand.
– reference: Williams, J.W., Jackson, S.T. & Kutzbach, J.E. (2007) Projected distributions of novel and disappearing climates by 2100 AD. Proceedings of the National Academy of Sciences of the United States of America, 104, 5738-5742.
– reference: Myers, N., Mittermeier, R.A., Mittermeier, C.G., da Fonseca, G.A.B. & Kent, J. (2000) Biodiversity hotspots for conservation priorities. Nature, 403, 853-858.
– reference: Thuiller, W., Lafourcade, B., Engler, R. & Araújo, M.B. (2009) BIOMOD - a platform for ensemble forecasting of species distributions. Ecography, 32, 369-373.
– reference: Bergl, R.A., Oates, J.F. & Fotso, R. (2007) Distribution and protected area coverage of endemic taxa in West Africa's Biafran forests and highlands. Biological Conservation, 134, 195-208.
– reference: Gassó, N., Pyšek, P., Vilà, M. & Williamson, M. (2010) Spreading to a limit: the time required for a neophyte to reach its maximum range. Diversity and Distributions, 16, 310-311.
– reference: Kinzig, A.P. & Harte, J. (2000) Implications of endemics-area relationships for estimates of species extinction. Ecology, 81, 3305-3311.
– reference: Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G. & Jarvis, A. (2005) Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25, 1965-1978.
– reference: Beaumont, L.J., Pitman, A., Perkins, S., Zimmermann, N.E., Yoccoz, N.G. & Thuiller, W. (2010) Impacts of climate change on the world's most exceptional ecoregions. Proceedings of the National Academy of Sciences of the United States of America, 108, 2306-2311.
– reference: Bacon, S.J., Aebi, A., Calanca, P. & Bacher, S. (2013) Quarantine arthropod invasions in Europe: the role of climate, hosts and propagule pressure. Diversity and Distributions, 20, 84-94.
– reference: Estes, L.D., Beukes, H., Bradley, B.A., Debats, S.R., Oppenheimer, M., Ruane, A.C., Schulze, R. & Tadross, M. (2013) Projected climate impacts to South African maize and wheat production in 2055: a comparison of empirical and mechanistic modeling approaches. Global Change Biology, 19, 3762-3774.
– reference: Parmesan, C. (2006) Ecological and evolutionary responses to recent climate change. Annual Review of Ecology, Evolution, and Systematics, 37, 637-669.
– reference: Murdoch, W., Polasky, S., Wilson, K.A., Possingham, H.P., Kareiva, P. & Shaw, R. (2007) Maximizing return on investment in conservation. Biological Conservation, 139, 375-388.
– year: 2011
– volume: 19
  start-page: 3762
  year: 2013
  end-page: 3774
  article-title: Projected climate impacts to South African maize and wheat production in 2055: a comparison of empirical and mechanistic modeling approaches
  publication-title: Global Change Biology
– volume: 91
  start-page: 1022
  year: 2003
  end-page: 1033
  article-title: Pollen‐vegetation calibration for tundra communities in the Arctic Foothills, northern Alaska
  publication-title: Journal of Ecology
– volume: 16
  start-page: 310
  year: 2010
  end-page: 311
  article-title: Spreading to a limit: the time required for a neophyte to reach its maximum range
  publication-title: Diversity and Distributions
– volume: 24
  start-page: 38
  year: 1997
  end-page: 49
  article-title: A review of methods for the assessment of prediction errors in conservation presence/absence models
  publication-title: Environmental Conservation
– volume: 18
  start-page: 1698
  year: 2012
  end-page: 1713
  article-title: No‐analog climates and shifting realized niches during the late quaternary: implications for 21st‐century predictions by species distribution models
  publication-title: Global Change Biology
– volume: 15
  start-page: 365
  year: 2012
  end-page: 377
  article-title: Impacts of climate change on the future of biodiversity
  publication-title: Ecology Letters
– volume: 54
  start-page: 677
  year: 2004
  end-page: 688
  article-title: Effects of invasive alien plants on fire regimes
  publication-title: BioScience
– volume: 106
  start-page: 19729
  year: 2009
  end-page: 19736
  article-title: Niches, models, and climate change: assessing the assumptions and uncertainties
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 81
  start-page: 3305
  year: 2000
  end-page: 3311
  article-title: Implications of endemics–area relationships for estimates of species extinction
  publication-title: Ecology
– year: 2007
– volume: 28
  start-page: 58
  year: 2013
  end-page: 66
  article-title: Impacts of biological invasions: what's what and the way forward
  publication-title: Trends in Ecology and Evolution
– volume: 10
  start-page: 701
  year: 2007
  end-page: 709
  article-title: Evidence of climatic niche shift during biological invasion
  publication-title: Ecology Letters
– volume: 16
  start-page: 331
  year: 2010
  end-page: 342
  article-title: Predicting potential distributions of invasive species: where to go from here?
  publication-title: Diversity and Distributions
– year: 2000
– volume: 5
  start-page: 498
  year: 2011
  end-page: 507
  article-title: Insights into the area under the receiver operating characteristic curve (AUC) as a discrimination measure in species distribution modelling
  publication-title: Global Ecology and Biogeography
– volume: 46
  start-page: 1223
  year: 2006
  end-page: 1232
  article-title: Assessing the accuracy of species distribution models?: prevalence, kappa and the true skill statistic (TSS)
  publication-title: Journal of Applied Ecology
– volume: 46
  start-page: 964
  year: 2009
  end-page: 969
  article-title: Climate change, connectivity and conservation decision making: back to basics
  publication-title: Journal of Applied Ecology
– volume: 432
  start-page: 750
  year: 2004
  end-page: 753
  article-title: A taxa–area relationship for bacteria
  publication-title: Nature
– volume: 16
  start-page: 909
  year: 2002
  end-page: 923
  article-title: Habitat loss and extinction in the hotspots of biodiversity
  publication-title: Conservation Biology
– volume: 18
  start-page: 554
  year: 2012
  end-page: 562
  article-title: How biotic interactions may alter future predictions of species distributions: future threats to the persistence of the arctic fox in Fennoscandia
  publication-title: Diversity and Distributions
– volume: 139
  start-page: 375
  year: 2007
  end-page: 388
  article-title: Maximizing return on investment in conservation
  publication-title: Biological Conservation
– volume: 80
  start-page: 417
  year: 1997
  end-page: 427
  article-title: On the implications of species‐area relationships for endemism, spatial turnover, and food web patterns
  publication-title: Oikos
– volume: 25
  start-page: 1965
  year: 2005
  end-page: 1978
  article-title: Very high resolution interpolated climate surfaces for global land areas
  publication-title: International Journal of Climatology
– volume: 22
  start-page: 583
  year: 2007
  end-page: 592
  article-title: Conservation planning in a changing world
  publication-title: Trends in Ecology and Evolution
– year: 2012
– volume: 37
  start-page: 637
  year: 2006
  end-page: 669
  article-title: Ecological and evolutionary responses to recent climate change
  publication-title: Annual Review of Ecology, Evolution, and Systematics
– volume: 12
  start-page: 374
  year: 2009
  end-page: 390
  article-title: GLOBIO3: a framework to investigate options for reducing global terrestrial biodiversity loss
  publication-title: Ecosystems
– volume: 104
  start-page: 5738
  year: 2007
  end-page: 5742
  article-title: Projected distributions of novel and disappearing climates by 2100 AD
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 26
  start-page: 216
  year: 2011
  end-page: 221
  article-title: Translocation of species, climate change, and the end of trying to recreate past ecological communities
  publication-title: Trends in Ecology and Evolution
– volume: 22
  start-page: 42
  year: 2007
  end-page: 47
  article-title: Ensemble forecasting of species distributions
  publication-title: Trends in Ecology and Evolution
– volume: 403
  start-page: 853
  year: 2000
  end-page: 858
  article-title: Biodiversity hotspots for conservation priorities
  publication-title: Nature
– volume: 41
  start-page: 321
  year: 2010
  end-page: 350
  article-title: Biodiversity and climate change: integrating evolutionary and ecological responses of species and communities
  publication-title: Annual Review of Ecology, Evolution, and Systematics
– start-page: 174
  year: 1995
  end-page: 191
– year: 2004
– volume: 335
  start-page: 1344
  year: 2012
  end-page: 1348
  article-title: Climatic niche shifts are rare among terrestrial plant invaders
  publication-title: Science
– volume: 11
  start-page: 1042
  year: 2005
  end-page: 1053
  article-title: Landscape‐scale positive feedbacks between fire and expansion of the large tussock grass, in Catalan shrublands
  publication-title: Global Change Biology
– year: 1995
– volume: 134
  start-page: 195
  year: 2007
  end-page: 208
  article-title: Distribution and protected area coverage of endemic taxa in West Africa's Biafran forests and highlands
  publication-title: Biological Conservation
– volume: 20
  start-page: 538
  year: 2006
  end-page: 548
  article-title: Global warming and extinctions of endemic species from biodiversity hotspots
  publication-title: Conservation Biology
– volume: 479
  start-page: 359
  year: 2011
  end-page: 364
  article-title: Species‐specific responses of Late Quaternary megafauna to climate and humans
  publication-title: Nature
– volume: 108
  start-page: 2306
  year: 2010
  end-page: 2311
  article-title: Impacts of climate change on the world's most exceptional ecoregions
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 16
  start-page: 95
  year: 2010
  end-page: 108
  article-title: Global indicators of biological invasion: species numbers, biodiversity impact and policy responses
  publication-title: Diversity and Distributions
– volume: 32
  start-page: 369
  year: 2009
  end-page: 373
  article-title: BIOMOD – a platform for ensemble forecasting of species distributions
  publication-title: Ecography
– volume: 20
  start-page: 84
  year: 2013
  end-page: 94
  article-title: Quarantine arthropod invasions in Europe: the role of climate, hosts and propagule pressure
  publication-title: Diversity and Distributions
– volume: 26
  start-page: 1959
  year: 2005
  end-page: 1977
  article-title: GLC2000: a new approach to global land cover mapping from Earth observation data
  publication-title: International Journal of Remote Sensing
– volume: 19
  start-page: 3740
  year: 2013
  end-page: 3748
  article-title: Will climate change promote future invasions?
  publication-title: Global Change Biology
– start-page: 23
  year: 2012
  end-page: 42
– volume-title: Hotspots revisited: earth's biologically richest and most endangered terrestrial ecoregions
  year: 2004
  ident: e_1_2_6_34_1
– ident: e_1_2_6_32_1
  doi: 10.1111/j.1472-4642.2009.00633.x
– ident: e_1_2_6_3_1
  doi: 10.1111/j.1365-2664.2006.01214.x
– ident: e_1_2_6_5_1
  doi: 10.1111/ddi.12149
– ident: e_1_2_6_38_1
  doi: 10.1111/j.0014-3820.2006.tb01872.x
– ident: e_1_2_6_19_1
  doi: 10.1111/j.1472-4642.2010.00647.x
– ident: e_1_2_6_33_1
  doi: 10.1111/j.1523-1739.2006.00364.x
– ident: e_1_2_6_24_1
  doi: 10.1111/j.1472-4642.2011.00876.x
– volume-title: 100 of the world's worst invasive alien species: a selection from the Global Invasive Species Database
  year: 2000
  ident: e_1_2_6_31_1
– ident: e_1_2_6_49_1
  doi: 10.1073/pnas.0606292104
– volume: 5
  start-page: 498
  year: 2011
  ident: e_1_2_6_27_1
  article-title: Insights into the area under the receiver operating characteristic curve (AUC) as a discrimination measure in species distribution modelling
  publication-title: Global Ecology and Biogeography
– ident: e_1_2_6_44_1
  doi: 10.1016/j.tree.2012.07.013
– ident: e_1_2_6_29_1
  doi: 10.1146/annurev-ecolsys-102209-144628
– ident: e_1_2_6_47_1
  doi: 10.1111/j.1365-2486.2011.02635.x
– ident: e_1_2_6_21_1
  doi: 10.2307/3546614
– ident: e_1_2_6_20_1
  doi: 10.1111/j.1365-2486.2005.00980.x
– ident: e_1_2_6_8_1
  doi: 10.1111/j.1461-0248.2011.01736.x
– ident: e_1_2_6_12_1
  doi: 10.1641/0006-3568(2004)054[0677:EOIAPO]2.0.CO;2
– ident: e_1_2_6_2_1
  doi: 10.1007/s10021-009-9229-5
– ident: e_1_2_6_6_1
  doi: 10.1080/01431160412331291297
– ident: e_1_2_6_48_1
  doi: 10.1073/pnas.0901639106
– ident: e_1_2_6_36_1
  doi: 10.1038/35002501
– start-page: 23
  volume-title: Biodiversity hotspots: distribution and protection of conservation priority areas
  year: 2012
  ident: e_1_2_6_43_1
– ident: e_1_2_6_11_1
  doi: 10.1111/j.1461-0248.2007.01060.x
– ident: e_1_2_6_35_1
  doi: 10.1016/j.biocon.2007.07.011
– ident: e_1_2_6_42_1
  doi: 10.1111/j.2006.0906-7590.04272.x
– ident: e_1_2_6_28_1
  doi: 10.1890/0012-9658(2000)081[3305:IOEARF]2.0.CO;2
– ident: e_1_2_6_4_1
  doi: 10.1016/j.tree.2006.09.010
– ident: e_1_2_6_37_1
  doi: 10.1046/j.1365-2745.2003.00823.x
– volume-title: Hotspots
  year: 2011
  ident: e_1_2_6_14_1
– ident: e_1_2_6_13_1
  doi: 10.1046/j.1523-1739.2002.00530.x
– ident: e_1_2_6_39_1
  doi: 10.1126/science.1215933
– volume-title: R: a language and environment for statistical computing
  year: 2012
  ident: e_1_2_6_41_1
– ident: e_1_2_6_45_1
  doi: 10.1016/j.tree.2011.02.006
– ident: e_1_2_6_10_1
  doi: 10.1016/j.biocon.2006.08.013
– ident: e_1_2_6_30_1
  doi: 10.1038/nature10574
– start-page: 174
  volume-title: Global biodiversity assessment
  year: 1995
  ident: e_1_2_6_15_1
– ident: e_1_2_6_18_1
  doi: 10.1111/j.1472-4642.2010.00652.x
– ident: e_1_2_6_17_1
  doi: 10.1017/S0376892997000088
– ident: e_1_2_6_46_1
  doi: 10.1111/j.1600-0587.2008.05742.x
– ident: e_1_2_6_9_1
  doi: 10.1111/gcb.12344
– ident: e_1_2_6_7_1
  doi: 10.1073/pnas.1007217108
– ident: e_1_2_6_40_1
  doi: 10.1016/j.tree.2007.10.001
– ident: e_1_2_6_25_1
  doi: 10.1038/nature03073
– volume-title: Contribution of working groups I, II, and III to the fourth assessment report of the intergovernmental panel on climate change
  year: 2007
  ident: e_1_2_6_26_1
– ident: e_1_2_6_16_1
  doi: 10.1111/gcb.12325
– ident: e_1_2_6_22_1
  doi: 10.1002/joc.1276
– ident: e_1_2_6_23_1
  doi: 10.1111/j.1365-2664.2009.01695.x
SSID ssj0005456
Score 2.57004
Snippet AIM: Global changes are predicted to have severe consequences for biodiversity; 34 biodiversity hotspots have become international priorities for conservation,...
Aim: Global changes are predicted to have severe consequences for biodiversity; 34 biodiversity hotspots have become international priorities for conservation,...
Aim Global changes are predicted to have severe consequences for biodiversity; 34 biodiversity hotspots have become international priorities for conservation,...
Aim Global changes are predicted to have severe consequences for biodiversity; 34 biodiversity hotspots have become international priorities for conservation,...
AimGlobal changes are predicted to have severe consequences for biodiversity; 34 biodiversity hotspots have become international priorities for conservation,...
SourceID hal
proquest
pascalfrancis
crossref
wiley
jstor
istex
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1376
SubjectTerms Animal and plant ecology
Animal, plant and microbial ecology
Applied ecology
Biodiversity
Biodiversity and Ecology
Biodiversity conservation
Biodiversity hotspots
Biological and medical sciences
biological invasions
climate
Climate change
Climatic zones
Climatology. Bioclimatology. Climate change
conservation
Conservation biology
Conservation, protection and management of environment and wildlife
Earth, ocean, space
Ecological invasion
Ecoregions
Endemic species
Environmental Sciences
Exact sciences and technology
External geophysics
forests
Fundamental and applied biological sciences. Psychology
General aspects
Habitat conservation
habitats
introduced species
Invasive species
islands
land-use change
Meteorology
monitoring
Nonnative species
Parks, reserves, wildlife conservation. Endangered species: population survey and restocking
pastures
spatial prioritization
Synecology
Title Vulnerability of biodiversity hotspots to global change
URI https://api.istex.fr/ark:/67375/WNG-SZJ71Z8Q-R/fulltext.pdf
https://www.jstor.org/stable/43871452
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fgeb.12228
https://www.proquest.com/docview/1619271373
https://www.proquest.com/docview/1627985176
https://www.proquest.com/docview/1663577909
https://univ-rennes.hal.science/hal-01374435
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9RAEF5qi-CL2urRaC1RRHzJcbvZZBN8quXao2jB1tOjCMvuZreVlos0ObH-9c5sfrRXVMSX48hNjmQyO_vN5ptvCXlJdWqgYIsjw4WLuLY0ym2SQM0jUkXjYqQ0diO_P0wnU34wS2Yr5E3XC9PoQ_QLbjgyfL7GAa50dWOQn1o9pLh-AfkXuVoIiI6upaMQGTSdRWkEk-CsVRVCFk9_5tJcdMepEj7PkA-5hi7-0VEUkS-pKnCZa_a6WAKjNyGtn5P2HpAv3d00VJTz4aLWQ_PzltDjf97uQ3K_xarhThNc62TFzjfI3bHXub7aIIPxdZMcmLVZonpExKfFBYpZe97tVVi6UH8ti44AEp6VNdTSdRXWZdjokYRN-_FjMt0bf9ydRO0GDZHBFtWIWcdGJjEus6kpeFHAUcczk2dG85GJFQf8kFKbAYbIlMozKO4KIwwTLgWkp-IBWZ2Xc7tJQqVhtjaU6dg5-BORKepY4USRM6OUigPyuntU0rTq5biJxoXsqhhwkPQOCsiL3vRbI9nxO6NNeN5SnUIqldNjhgs_XtqICTgfgqA_FfW3JzvvJB5DfUYOAPM7DcgrHyO9mbo8R46cSOTnw315fHIg6En2QR4FZOCDqDfkMdSoPGEB2V6Kqt4ASmDAtSlcx1YXZrJNLJWkWPAKuAzwyPP-Z0gJ-J5HzW25QBsmcvCvSP9mg0KEIh_l4Fkfd3_2ldwfv_Vfnvy76VNyD3zKG-LPFlmtLxf2GcC3Wm_7cfoLuHg8Mg
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEB_6gehL1erR1FqjiPiS4zbZZBPwpcq1Z70e2Pb0KJRls8m20nKRXk6sf70zm4_2REV8CSGZDZvJ7OxvNjO_BXjJ0khjwBZ4mgvj8TRnXpKHIcY8IlIsyHoqpWrkg1E0GPP9SThZgjdNLUzFD9EuuNHIsP6aBjgtSN8a5Wd52mW0gLEMq7Sjtw2oDm_IowgbVLVFkYfT4KTmFaI8nrbpwmy0bFSBx3PKiFwlJX9vkhQpY1LNUGmm2u1iAY7eBrV2Vtq9D6fN-1TJKBfdeZl29Y9fqB7_94UfwFoNV92dyr4ewlI-XYc7fUt1fb0Onf5NnRyK1Y5i9gjEp_kl8Vnb1NtrtzBu-qXImhwQ97woMZwuZ25ZuBUliVtVID-G8W7_-N3Aq_do8DRVqXp-bvyeDrWJ80hnPMvwquGxTmKd8p4OFEcIEbE8RhgRK5XEGN9lWmhfmAjBngo6sDItpvkGuCrFCVszPw2MwYeIWDHjZ0Zkia-VUoEDr5tvJXVNYE77aFzKJpBBBUmrIAdetKJfK9aO3wlt4AeX6gy9qRwf-bT2Y9mNfIHt0QrapkTBPdgZSrpGFI0cMeY35sArayStmLq6oDQ5EcrPoz15dLIv2En8UR460LFW1AryAMNUHvoObC-YVSuAUTBC2wj7sdXYmax9y0wyinkFdgM18ry9jV6BfvWoaV7MScYXCepXRH-TIS5CkfQS1Kw1vD_rSu7139qTzX8XfQZ3B8cHQzl8P_rwBO6hfnmVB7QFK-XVPH-KaK5Mt-2g_Qlf9EBN
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED_tQyBe-BhUC4wREEK8pGocJ07E02DtyhgVbHRUE5LlOPGGNjXTmiLGX8-d87EVAUK8RFFyjpzL-fw75-5ngOd-GmkM2AJPc2E8nua-l-RhiDGPiJQfZD2VUjXy-1E0HPPdSThZgldNLUzFD9EuuNHIsP6aBvh5Zq4N8uM87fq0frEMqzzqxWTS2_tX3FEEDarSosjDWXBS0wpRGk_bdGEyWjaqwOMJJUSuko6_NzmKlDCpZqgzU212sYBGr2NaOykN7sCX5nWqXJTT7rxMu_rHL0yP__m-d-F2DVbdrcq67sFSPl2DG31LdH25Bp3-VZUcitVuYnYfxOH8jNisbeLtpVsYN_1aZE0GiHtSlBhMlzO3LNyKkMSt6o8fwHjQ__Rm6NU7NHiaalQ9lhvW06E2cR7pjGcZXjU81kmsU97TgeIIICI_jxFExEolMUZ3mRaaCRMh1FNBB1amxTRfB1elOF1rn6WBMfgQESvfsMyILGFaKRU48LL5VFLX9OW0i8aZbMIYVJC0CnLgWSt6XnF2_E5oHb-3VMfoS-X4gNHKj-U2YgLboxG0TYmAe7i1J-kaETRyRJjffAdeWBtpxdTFKSXJiVB-Hu3Ig6Nd4R_FH-W-Ax1rRK0gDzBI5SFzYHPBqloBjIER2EbYj43GzGTtWWbSp4hXYDdQI0_b2-gT6EePmubFnGSYSFC_IvqbDDERiqSXoGat3f1ZV3Kn_9qePPx30Sdw88P2QO69Hb17BLdQvbxKAtqAlfJinj9GKFemm3bI_gSIGz8F
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Vulnerability+of+biodiversity+hotspots+to+global+change&rft.jtitle=Global+ecology+and+biogeography&rft.au=Bellard%2C+C%C3%A9line&rft.au=Leclerc%2C+Camille&rft.au=Leroy%2C+Boris&rft.au=Bakkenes%2C+Michel&rft.date=2014-12-01&rft.issn=1466-822X&rft.eissn=1466-8238&rft.volume=23&rft.issue=12&rft.spage=1376&rft.epage=1386&rft_id=info:doi/10.1111%2Fgeb.12228&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_geb_12228
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1466-822X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1466-822X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1466-822X&client=summon