Vulnerability of biodiversity hotspots to global change
AIM: Global changes are predicted to have severe consequences for biodiversity; 34 biodiversity hotspots have become international priorities for conservation, with important efforts allocated to their preservation, but the potential effects of global changes on hotspots have so far received relativ...
Saved in:
Published in | Global ecology and biogeography Vol. 23; no. 12; pp. 1376 - 1386 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Blackwell Science
01.12.2014
Blackwell Publishing Ltd John Wiley & Sons Ltd Blackwell Wiley Subscription Services, Inc Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | AIM: Global changes are predicted to have severe consequences for biodiversity; 34 biodiversity hotspots have become international priorities for conservation, with important efforts allocated to their preservation, but the potential effects of global changes on hotspots have so far received relatively little attention. We investigate whether hotspots are quantitatively and qualitatively threatened to the same order of magnitude by the combined effects of global changes. LOCATION: Worldwide, in 34 biodiversity hotspots. METHODS: We quantify (1) the exposure of hotspots to climate change, by estimating the novelty of future climates and the disappearance of extant climates using climate dissimilarity analyses, (2) each hotspot's vulnerability to land modification and degradation by quantifying changes in land‐cover variables over the entire habitat, and (3) the future suitability of distribution ranges of ‘100 of the world's worst invasive alien species’, by characterizing the combined effects of climate and land‐use changes on the future distribution ranges of these species. RESULTS: Our findings show that hotspots may experience an average loss of 31% of their area under analogue climate, with some hotspots more affected than others (e.g. Polynesia–Micronesia). The greatest climate change was projected in low‐latitude hotspots. The hotspots were on average suitable for 17% of the considered invasive species. Hotspots that are mainly islands or groups of islands were disproportionally suitable for a high number of invasive species both currently and in the future. We also showed that hotspots will increase their area of pasture in the future. Finally, combining the three threats, we identified the Atlantic forest, Cape Floristic Region and Polynesia–Micronesia as particularly vulnerable to global changes. MAIN CONCLUSIONS: Given our estimates of hotspot vulnerability to changes, close monitoring is now required to evaluate the biodiversity responses to future changes and to test our projections against observations. |
---|---|
AbstractList | AIM: Global changes are predicted to have severe consequences for biodiversity; 34 biodiversity hotspots have become international priorities for conservation, with important efforts allocated to their preservation, but the potential effects of global changes on hotspots have so far received relatively little attention. We investigate whether hotspots are quantitatively and qualitatively threatened to the same order of magnitude by the combined effects of global changes. LOCATION: Worldwide, in 34 biodiversity hotspots. METHODS: We quantify (1) the exposure of hotspots to climate change, by estimating the novelty of future climates and the disappearance of extant climates using climate dissimilarity analyses, (2) each hotspot's vulnerability to land modification and degradation by quantifying changes in land‐cover variables over the entire habitat, and (3) the future suitability of distribution ranges of ‘100 of the world's worst invasive alien species’, by characterizing the combined effects of climate and land‐use changes on the future distribution ranges of these species. RESULTS: Our findings show that hotspots may experience an average loss of 31% of their area under analogue climate, with some hotspots more affected than others (e.g. Polynesia–Micronesia). The greatest climate change was projected in low‐latitude hotspots. The hotspots were on average suitable for 17% of the considered invasive species. Hotspots that are mainly islands or groups of islands were disproportionally suitable for a high number of invasive species both currently and in the future. We also showed that hotspots will increase their area of pasture in the future. Finally, combining the three threats, we identified the Atlantic forest, Cape Floristic Region and Polynesia–Micronesia as particularly vulnerable to global changes. MAIN CONCLUSIONS: Given our estimates of hotspot vulnerability to changes, close monitoring is now required to evaluate the biodiversity responses to future changes and to test our projections against observations. Aim Global changes are predicted to have severe consequences for biodiversity; 34 biodiversity hotspots have become international priorities for conservation, with important efforts allocated to their preservation, but the potential effects of global changes on hotspots have so far received relatively little attention. We investigate whether hotspots are quantitatively and qualitatively threatened to the same order of magnitude by the combined effects of global changes. Location Worldwide, in 34 biodiversity hotspots. Methods We quantify (1) the exposure of hotspots to climate change, by estimating the novelty of future climates and the disappearance of extant climates using climate dissimilarity analyses, (2) each hotspot's vulnerability to land modification and degradation by quantifying changes in land‐cover variables over the entire habitat, and (3) the future suitability of distribution ranges of ‘100 of the world's worst invasive alien species’, by characterizing the combined effects of climate and land‐use changes on the future distribution ranges of these species. Results Our findings show that hotspots may experience an average loss of 31% of their area under analogue climate, with some hotspots more affected than others (e.g. Polynesia–Micronesia). The greatest climate change was projected in low‐latitude hotspots. The hotspots were on average suitable for 17% of the considered invasive species. Hotspots that are mainly islands or groups of islands were disproportionally suitable for a high number of invasive species both currently and in the future. We also showed that hotspots will increase their area of pasture in the future. Finally, combining the three threats, we identified the Atlantic forest, Cape Floristic Region and Polynesia–Micronesia as particularly vulnerable to global changes. Main conclusions Given our estimates of hotspot vulnerability to changes, close monitoring is now required to evaluate the biodiversity responses to future changes and to test our projections against observations. AimGlobal changes are predicted to have severe consequences for biodiversity; 34 biodiversity hotspots have become international priorities for conservation, with important efforts allocated to their preservation, but the potential effects of global changes on hotspots have so far received relatively little attention. We investigate whether hotspots are quantitatively and qualitatively threatened to the same order of magnitude by the combined effects of global changes. LocationWorldwide, in 34 biodiversity hotspots. MethodsWe quantify (1) the exposure of hotspots to climate change, by estimating the novelty of future climates and the disappearance of extant climates using climate dissimilarity analyses, (2) each hotspot's vulnerability to land modification and degradation by quantifying changes in land-cover variables over the entire habitat, and (3) the future suitability of distribution ranges of 100 of the world's worst invasive alien species', by characterizing the combined effects of climate and land-use changes on the future distribution ranges of these species. ResultsOur findings show that hotspots may experience an average loss of 31% of their area under analogue climate, with some hotspots more affected than others (e.g. Polynesia-Micronesia). The greatest climate change was projected in low-latitude hotspots. The hotspots were on average suitable for 17% of the considered invasive species. Hotspots that are mainly islands or groups of islands were disproportionally suitable for a high number of invasive species both currently and in the future. We also showed that hotspots will increase their area of pasture in the future. Finally, combining the three threats, we identified the Atlantic forest, Cape Floristic Region and Polynesia-Micronesia as particularly vulnerable to global changes. Main conclusionsGiven our estimates of hotspot vulnerability to changes, close monitoring is now required to evaluate the biodiversity responses to future changes and to test our projections against observations. Aim: Global changes are predicted to have severe consequences for biodiversity; 34 biodiversity hotspots have become international priorities for conservation, with important efforts allocated to their preservation, but the potential effects of global changes on hotspots have so far received relatively little attention. We investigate whether hotspots are quantitatively and qualitatively threatened to the same order of magnitude by the combined effects of global changes. Location: Worldwide, in 34 biodiversity hotspots. Methods: We quantify (1) the exposure of hotspots to climate change, by estimating the novelty of future climates and the disappearance of extant climates using climate dissimilarity analyses, (2) each hotspot's vulnerability to land modification and degradation by quantifying changes in land-cover variables over the entire habitat, and (3) the future suitability of distribution ranges of '100 of the world's worst invasive alien species', by characterizing the combined effects of climate and land-use changes on the future distribution ranges of these species. Results: Our findings show that hotspots may experience an average loss of 31% of their area under analogue climate, with some hotspots more affected than others (e.g. Polynesia-Micronesia). The greatest climate change was projected in lowlatitude hotspots. The hotspots were on average suitable for 17% of the considered invasive species. Hotspots that are mainly islands or groups of islands were disproportionally suitable for a high number of invasive species both currently and in the future. We also showed that hotspots will increase their area of pasture in the future. Finally, combining the three threats, we identified the Atlantic forest, Cape Floristic Region and Polynesia-Micronesia as particularly vulnerable to global changes. Main conclusions: Given our estimates of hotspot vulnerability to changes, close monitoring is now required to evaluate the biodiversity responses to future changes and to test our projections against observations. |
Author | Leroy, Boris Leclerc, Camille Thuiller, Wilfried Bellard, Céline Veloz, Samuel Bakkenes, Michel Courchamp, Franck |
Author_xml | – sequence: 1 fullname: Bellard, Céline – sequence: 2 fullname: Leclerc, Camille – sequence: 3 fullname: Leroy, Boris – sequence: 4 fullname: Bakkenes, Michel – sequence: 5 fullname: Veloz, Samuel – sequence: 6 fullname: Thuiller, Wilfried – sequence: 7 fullname: Courchamp, Franck |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28915467$$DView record in Pascal Francis https://univ-rennes.hal.science/hal-01374435$$DView record in HAL |
BookMark | eNqNkltrFDEUxwdpwV588AOIAyLow7RJJrd5rKVulUXRWpW-hDOZzG626WRNZtvutzfrbEcQBQMhyTm__-Fcsp_tdL4zWfYUoyOc1vHM1EeYECIfZXuYcl5IUsqd8U6-P872Y1wghBhlfC8TX1euMwFq62y_zn2b19Y39taEuHnPfR-Xaee9z2fO1-ByPYduZg6z3RZcNE-250F2-fbsy-l5Mf04eXd6Mi00p0IWxLQEaaZbabhuaNMka0ulrqSuKdIlUCwxx0YSSiVAJWVVNVpoIlouGYbyIHs9xJ2DU8tgbyCslQerzk-mamNDuBSUluwWJ_bVwC6D_7EysVc3NmrjHHTGr6LCnJdMiApV_4ESUaUEBE_oiz_QhV-FLhWdKFwRkRIoE_VyS0HU4NoAnbZxzJjICjPKReKOB04HH2MwrdK2h976rg9gncJIbeao0hzVrzn-7sCoeAj6N3Yb_c46s_43qCZnbx4UzwbFIvY-jApaSoEpI8lfDH4be3M_-iFcq1SNYOrbh4m6uHov8JX8pD4n_vnAt-AVzELqweUFQZilHydE6mr5E0jgzQ4 |
CODEN | GEBIFS |
CitedBy_id | crossref_primary_10_7717_peerj_11673 crossref_primary_10_1111_ddi_13018 crossref_primary_10_1016_j_scitotenv_2023_161917 crossref_primary_10_1038_s41559_021_01411_5 crossref_primary_10_1007_s10530_020_02332_3 crossref_primary_10_1111_ddi_13136 crossref_primary_10_1016_j_pecon_2021_03_008 crossref_primary_10_1038_s41598_023_41121_5 crossref_primary_10_1590_2175_7860202374047 crossref_primary_10_1016_j_soilbio_2022_108931 crossref_primary_10_1016_j_ecolind_2020_106888 crossref_primary_10_1016_j_ecolind_2021_107900 crossref_primary_10_1016_j_jaridenv_2020_104177 crossref_primary_10_1017_S0376892922000212 crossref_primary_10_3390_rs12182948 crossref_primary_10_1016_j_biocon_2023_110069 crossref_primary_10_4000_vertigo_17084 crossref_primary_10_1016_j_gecco_2015_07_012 crossref_primary_10_3389_fpls_2017_01051 crossref_primary_10_1111_icad_12760 crossref_primary_10_1038_s41467_019_12603_w crossref_primary_10_1016_j_rsase_2024_101155 crossref_primary_10_1111_ibi_13045 crossref_primary_10_1007_s10530_018_1727_y crossref_primary_10_1080_13416979_2024_2428519 crossref_primary_10_1177_1940082918818401 crossref_primary_10_1038_s41559_025_02664_0 crossref_primary_10_1016_j_ecolind_2024_112540 crossref_primary_10_1007_s12665_016_5826_8 crossref_primary_10_1038_s41598_017_13088_7 crossref_primary_10_1007_s10531_022_02364_2 crossref_primary_10_1093_jmammal_gyac084 crossref_primary_10_3389_fevo_2022_984842 crossref_primary_10_1002_ajb2_16214 crossref_primary_10_1016_j_rsase_2024_101142 crossref_primary_10_1111_jvs_13049 crossref_primary_10_1016_j_gecco_2024_e03154 crossref_primary_10_1038_s41598_019_51107_x crossref_primary_10_58837_tnh_24_1_263152 crossref_primary_10_1007_s10530_018_1840_y crossref_primary_10_1007_s13280_020_01353_5 crossref_primary_10_1111_geb_12695 crossref_primary_10_3389_fmars_2019_00109 crossref_primary_10_3390_su15108029 crossref_primary_10_1038_s42003_022_03943_3 crossref_primary_10_1016_j_foreco_2023_121484 crossref_primary_10_1111_geb_70000 crossref_primary_10_1590_0001_3765202420220691 crossref_primary_10_1093_treephys_tpab006 crossref_primary_10_1016_j_geosus_2021_06_004 crossref_primary_10_1002_ece3_4098 crossref_primary_10_1038_s41559_017_0234_3 crossref_primary_10_1111_cla_12155 crossref_primary_10_3390_d17030195 crossref_primary_10_1007_s42991_024_00425_3 crossref_primary_10_1007_s10530_019_01920_2 crossref_primary_10_1016_j_gecco_2019_e00760 crossref_primary_10_1002_ajb2_1499 crossref_primary_10_1007_s10531_024_02857_2 crossref_primary_10_1016_j_ympev_2018_04_016 crossref_primary_10_3897_BDJ_11_e103270 crossref_primary_10_1016_j_pld_2024_06_004 crossref_primary_10_1016_j_jenvman_2021_112917 crossref_primary_10_1007_s11033_021_06822_y crossref_primary_10_1111_oik_08387 crossref_primary_10_1093_jmammal_gyab099 crossref_primary_10_1111_nph_14042 crossref_primary_10_3389_fevo_2020_00179 crossref_primary_10_3390_su12229454 crossref_primary_10_1016_j_gloplacha_2018_09_002 crossref_primary_10_2984_73_2_2 crossref_primary_10_1016_j_jaridenv_2024_105124 crossref_primary_10_2984_73_2_5 crossref_primary_10_1016_j_biocon_2021_109070 crossref_primary_10_1002_ece3_1833 crossref_primary_10_1016_j_cub_2014_11_067 crossref_primary_10_1016_j_indic_2024_100496 crossref_primary_10_1007_s11056_015_9500_x crossref_primary_10_3390_cli12110179 crossref_primary_10_1016_j_xplc_2022_100464 crossref_primary_10_1007_s10750_024_05476_8 crossref_primary_10_1016_j_pecon_2021_02_002 crossref_primary_10_1016_j_scitotenv_2023_169208 crossref_primary_10_1002_ece3_7945 crossref_primary_10_1111_nph_16052 crossref_primary_10_1016_j_pecon_2020_12_006 crossref_primary_10_1016_j_dendro_2018_04_004 crossref_primary_10_1007_s10531_021_02270_z crossref_primary_10_1111_1365_2435_14491 crossref_primary_10_1139_er_2024_0017 crossref_primary_10_1016_j_jaridenv_2016_02_005 crossref_primary_10_1111_ibi_13249 crossref_primary_10_1007_s11160_018_9526_1 crossref_primary_10_1108_IJCCSM_10_2021_0118 crossref_primary_10_1038_s41467_020_18740_x crossref_primary_10_1016_j_ecoinf_2018_04_004 crossref_primary_10_1016_j_ecolind_2022_109452 crossref_primary_10_1016_j_foreco_2020_118381 crossref_primary_10_3390_su12239953 crossref_primary_10_1007_s11355_024_00621_w crossref_primary_10_1016_j_biocon_2022_109715 crossref_primary_10_3390_insects12100916 crossref_primary_10_1016_j_biocon_2024_110650 crossref_primary_10_1016_j_scitotenv_2024_173307 crossref_primary_10_1017_S0030605319001388 crossref_primary_10_1038_s41598_020_74684_8 crossref_primary_10_7717_peerj_7612 crossref_primary_10_1111_gcb_13183 crossref_primary_10_1007_s13280_018_1120_1 crossref_primary_10_1371_journal_pone_0148570 crossref_primary_10_1080_02827581_2017_1283049 crossref_primary_10_1371_journal_pone_0138414 crossref_primary_10_35995_jea5010001 crossref_primary_10_4236_oje_2018_87023 crossref_primary_10_1093_botlinnean_boac034 crossref_primary_10_1111_gcb_15159 crossref_primary_10_1016_j_scitotenv_2021_147399 crossref_primary_10_1016_j_ecolind_2020_106509 crossref_primary_10_1371_journal_pone_0277749 crossref_primary_10_1016_j_foreco_2021_119301 crossref_primary_10_1007_s00128_019_02615_z crossref_primary_10_1016_j_scitotenv_2017_10_065 crossref_primary_10_1016_j_jaridenv_2021_104522 crossref_primary_10_3390_land13060737 crossref_primary_10_1007_s00248_018_1295_9 crossref_primary_10_3390_su11246932 crossref_primary_10_3354_cr01408 crossref_primary_10_1111_geb_12360 crossref_primary_10_1016_j_scitotenv_2024_174622 crossref_primary_10_1111_btp_12981 crossref_primary_10_1017_S0959270920000246 crossref_primary_10_1007_s10530_020_02400_8 crossref_primary_10_1007_s40415_022_00801_8 crossref_primary_10_1007_s10531_015_0972_y crossref_primary_10_3390_cli9120172 crossref_primary_10_3389_ffgc_2020_00053 crossref_primary_10_1600_036364422X16674053033886 crossref_primary_10_1016_j_biocon_2023_109911 crossref_primary_10_1371_journal_pone_0152495 crossref_primary_10_2478_sg_2021_0010 crossref_primary_10_1007_s11629_020_5983_9 crossref_primary_10_1016_j_mbs_2018_09_005 crossref_primary_10_1111_mam_12322 crossref_primary_10_1016_j_ecoleng_2022_106840 crossref_primary_10_1007_s10113_020_01686_7 crossref_primary_10_1038_s41893_025_01508_w crossref_primary_10_1016_j_biocon_2023_110213 crossref_primary_10_1016_j_aquabot_2020_103293 crossref_primary_10_3389_fagro_2022_825087 crossref_primary_10_1093_conphys_coz070 crossref_primary_10_1007_s11629_023_8258_4 crossref_primary_10_3389_fpls_2019_00767 crossref_primary_10_1007_s10530_022_02771_0 crossref_primary_10_1016_j_scitotenv_2017_03_120 crossref_primary_10_1093_forestry_cpae031 crossref_primary_10_1111_geb_13716 crossref_primary_10_1111_ddi_13776 crossref_primary_10_1111_ddi_12686 crossref_primary_10_1016_j_landurbplan_2019_02_008 crossref_primary_10_3390_plants12102017 crossref_primary_10_1016_j_pld_2023_10_001 crossref_primary_10_1038_s41598_023_34236_2 crossref_primary_10_1111_cobi_13405 crossref_primary_10_1007_s11258_021_01169_7 crossref_primary_10_1002_ehs2_1242 crossref_primary_10_1002_ajp_23557 crossref_primary_10_1002_pan3_10765 crossref_primary_10_1016_j_scitotenv_2024_171296 crossref_primary_10_1111_ddi_13425 crossref_primary_10_1111_geb_13942 crossref_primary_10_1111_ddi_13303 crossref_primary_10_1371_journal_pone_0192249 crossref_primary_10_1007_s10530_021_02550_3 crossref_primary_10_1016_j_ecoinf_2024_102941 crossref_primary_10_1007_s10980_018_0613_4 crossref_primary_10_3390_su142316272 crossref_primary_10_1002_ece3_70750 crossref_primary_10_1590_2179_8087_114417 crossref_primary_10_1016_j_gecco_2025_e03499 crossref_primary_10_1659_MRD_JOURNAL_D_16_00093_1 crossref_primary_10_1002_ecs2_4589 crossref_primary_10_1590_1676_0611_bn_2023_1520 crossref_primary_10_1007_s13199_021_00775_3 crossref_primary_10_1007_s10265_018_1062_5 crossref_primary_10_1007_s10661_024_12316_8 crossref_primary_10_1002_ajp_23562 crossref_primary_10_1007_s00468_024_02508_7 crossref_primary_10_1017_S1742170522000229 crossref_primary_10_3389_fevo_2024_1358914 crossref_primary_10_1007_s10841_020_00219_1 crossref_primary_10_1016_j_jnc_2025_126874 crossref_primary_10_3897_BDJ_12_e129360 crossref_primary_10_1016_j_actao_2018_01_001 crossref_primary_10_1371_journal_pbio_2005987 crossref_primary_10_1007_s10661_019_7685_8 crossref_primary_10_1016_j_ecoinf_2022_101813 crossref_primary_10_1016_j_quascirev_2021_107005 crossref_primary_10_3390_meteorology3030014 crossref_primary_10_1111_mam_12378 crossref_primary_10_3389_fpls_2022_817730 crossref_primary_10_1016_j_scienta_2021_109935 crossref_primary_10_1590_1676_0611_bn_2016_0294 crossref_primary_10_3390_d14080688 crossref_primary_10_1007_s10584_020_02677_7 crossref_primary_10_1002_fee_1321 crossref_primary_10_1007_s10745_022_00352_2 crossref_primary_10_1002_ecs2_1729 crossref_primary_10_1007_s00468_019_01919_1 crossref_primary_10_1007_s40502_021_00616_x crossref_primary_10_1080_26395916_2023_2216804 crossref_primary_10_1016_j_envexpbot_2019_103872 crossref_primary_10_1016_j_gloplacha_2016_12_007 crossref_primary_10_1016_j_scitotenv_2020_144234 crossref_primary_10_1016_j_gecco_2022_e02246 crossref_primary_10_1016_j_jnc_2021_126094 crossref_primary_10_1080_14772000_2020_1783715 crossref_primary_10_5209_mbot_76648 crossref_primary_10_1016_j_biocon_2023_110257 crossref_primary_10_1007_s00468_019_01864_z crossref_primary_10_1016_j_biocon_2020_108579 crossref_primary_10_1016_j_gecco_2021_e01847 crossref_primary_10_1007_s10531_015_0980_y crossref_primary_10_1111_gcb_16629 crossref_primary_10_1186_s12870_025_06165_x crossref_primary_10_1007_s11027_017_9768_6 crossref_primary_10_3390_d11040062 crossref_primary_10_36868_IJCS_2023_04_18 crossref_primary_10_1007_s10344_025_01899_3 crossref_primary_10_1111_ecog_04564 crossref_primary_10_1111_jfb_15649 crossref_primary_10_1016_j_ecoinf_2021_101357 crossref_primary_10_32800_abc_2024_47_0101 crossref_primary_10_1016_j_gecco_2014_12_008 crossref_primary_10_1080_11263504_2020_1762782 crossref_primary_10_1016_j_ufug_2019_126465 crossref_primary_10_3390_ijerph20032689 crossref_primary_10_1007_s11056_018_9626_8 crossref_primary_10_1007_s13364_023_00672_8 crossref_primary_10_1007_s11258_021_01189_3 crossref_primary_10_1371_journal_pone_0134665 crossref_primary_10_1088_1748_9326_ac6436 crossref_primary_10_1111_pce_12859 crossref_primary_10_1002_ece3_5931 crossref_primary_10_1016_j_biocon_2016_06_031 crossref_primary_10_1002_ece3_10374 crossref_primary_10_1016_j_pecon_2018_04_001 crossref_primary_10_3390_su132111658 crossref_primary_10_1016_j_dendro_2018_12_004 crossref_primary_10_1016_j_foreco_2020_118656 crossref_primary_10_1111_aec_12849 crossref_primary_10_1002_aqc_2967 crossref_primary_10_1007_s10113_022_01904_4 crossref_primary_10_1016_j_jafrearsci_2022_104502 crossref_primary_10_1590_0102_33062019abb0173 crossref_primary_10_1038_s41467_019_10775_z crossref_primary_10_1016_j_jnc_2025_126835 crossref_primary_10_32615_ps_2021_013 crossref_primary_10_1007_s10531_018_1615_x crossref_primary_10_1007_s40626_023_00294_0 crossref_primary_10_1016_j_biocon_2025_111053 crossref_primary_10_1007_s10841_024_00551_w crossref_primary_10_5194_we_17_69_2017 crossref_primary_10_1080_27658511_2024_2314399 crossref_primary_10_1007_s10531_016_1280_x crossref_primary_10_1016_j_biocon_2023_110162 crossref_primary_10_1016_j_pecon_2019_02_001 crossref_primary_10_1371_journal_pone_0151545 crossref_primary_10_1016_j_regsus_2020_08_001 crossref_primary_10_1590_2236_8906_74_2020 crossref_primary_10_1155_2023_7628262 crossref_primary_10_7717_peerj_6479 crossref_primary_10_1007_s40415_024_00993_1 crossref_primary_10_1111_ddi_13007 crossref_primary_10_1590_1677_941x_abb_2022_0084 crossref_primary_10_1016_j_ecoinf_2024_102564 crossref_primary_10_1007_s42974_024_00196_4 crossref_primary_10_1088_1748_9326_ad64eb crossref_primary_10_3389_fevo_2020_571587 crossref_primary_10_1007_s10980_019_00778_y crossref_primary_10_7717_peerj_13464 crossref_primary_10_1111_aje_13111 crossref_primary_10_1126_sciadv_abe5582 crossref_primary_10_1007_s13280_015_0683_3 crossref_primary_10_1093_aob_mcw093 crossref_primary_10_1093_biosci_biab019 crossref_primary_10_1016_j_gecco_2025_e03515 crossref_primary_10_1007_s42965_022_00264_8 |
Cites_doi | 10.1111/j.1472-4642.2009.00633.x 10.1111/j.1365-2664.2006.01214.x 10.1111/ddi.12149 10.1111/j.0014-3820.2006.tb01872.x 10.1111/j.1472-4642.2010.00647.x 10.1111/j.1523-1739.2006.00364.x 10.1111/j.1472-4642.2011.00876.x 10.1073/pnas.0606292104 10.1016/j.tree.2012.07.013 10.1146/annurev-ecolsys-102209-144628 10.1111/j.1365-2486.2011.02635.x 10.2307/3546614 10.1111/j.1365-2486.2005.00980.x 10.1111/j.1461-0248.2011.01736.x 10.1641/0006-3568(2004)054[0677:EOIAPO]2.0.CO;2 10.1007/s10021-009-9229-5 10.1080/01431160412331291297 10.1073/pnas.0901639106 10.1038/35002501 10.1111/j.1461-0248.2007.01060.x 10.1016/j.biocon.2007.07.011 10.1111/j.2006.0906-7590.04272.x 10.1890/0012-9658(2000)081[3305:IOEARF]2.0.CO;2 10.1016/j.tree.2006.09.010 10.1046/j.1365-2745.2003.00823.x 10.1046/j.1523-1739.2002.00530.x 10.1126/science.1215933 10.1016/j.tree.2011.02.006 10.1016/j.biocon.2006.08.013 10.1038/nature10574 10.1111/j.1472-4642.2010.00652.x 10.1017/S0376892997000088 10.1111/j.1600-0587.2008.05742.x 10.1111/gcb.12344 10.1073/pnas.1007217108 10.1016/j.tree.2007.10.001 10.1038/nature03073 10.1111/gcb.12325 10.1002/joc.1276 10.1111/j.1365-2664.2009.01695.x |
ContentType | Journal Article |
Copyright | Copyright © 2014 John Wiley & Sons Ltd. 2014 John Wiley & Sons Ltd 2015 INIST-CNRS Copyright © 2014 John Wiley & Sons Ltd Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: Copyright © 2014 John Wiley & Sons Ltd. – notice: 2014 John Wiley & Sons Ltd – notice: 2015 INIST-CNRS – notice: Copyright © 2014 John Wiley & Sons Ltd – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | FBQ BSCLL AAYXX CITATION IQODW 7QG 7SN 7SS 7ST 7U6 C1K 7S9 L.6 1XC |
DOI | 10.1111/geb.12228 |
DatabaseName | AGRIS Istex CrossRef Pascal-Francis Animal Behavior Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Sustainability Science Abstracts Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic Hyper Article en Ligne (HAL) |
DatabaseTitle | CrossRef Entomology Abstracts Ecology Abstracts Environment Abstracts Sustainability Science Abstracts Animal Behavior Abstracts Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA Entomology Abstracts Ecology Abstracts |
Database_xml | – sequence: 1 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Ecology Environmental Sciences |
EISSN | 1466-8238 1466-822X |
EndPage | 1386 |
ExternalDocumentID | oai_HAL_hal_01374435v1 3479644841 28915467 10_1111_geb_12228 GEB12228 43871452 ark_67375_WNG_SZJ71Z8Q_R US201500077627 |
Genre | article |
GrantInformation_xml | – fundername: French Agence Nationale de la Recherche (ANR) – fundername: Service du Patrimoine Naturel – fundername: CNRS – fundername: European Research Council under the European Community's Seven Framework Programme FP7/2007‐2013 funderid: 281422 – fundername: Biodiversa Eranet FFII Project |
GroupedDBID | -~X .3N .GA .Y3 10A 1OC 29I 31~ 33P 4.4 50Y 51W 51X 52M 52N 52O 52P 52S 52T 52W 52X 5GY 5HH 5LA 5VS 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAEVG AAHHS AAHKG AAISJ AAKGQ AANLZ AASGY AAXRX AAZKR ABBHK ABCQN ABCUV ABEML ABHUG ABLJU ABPLY ABPPZ ABPTK ABPVW ABTLG ACAHQ ACBWZ ACCFJ ACCZN ACPOU ACPRK ACSCC ACSTJ ACXBN ACXME ACXQS ADAWD ADBBV ADDAD ADEOM ADIZJ ADKYN ADMGS ADOZA ADULT ADXAS ADZLD ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AESBF AEUPB AEUQT AEUYR AFAZZ AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFVGU AFZJQ AGJLS AGUYK AIRJO AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ANHSF ASPBG ATUGU AUFTA AVWKF AZFZN BDRZF BFHJK BMNLL BMXJE BRXPI BY8 CAG CBGCD COF CS3 CUYZI CWIXF D-E D-F DCZOG DEVKO DOOOF DPXWK DR2 DRFUL DRSTM DWIUU EBS ECGQY EJD EQZMY ESX F00 F01 F04 FBQ FEDTE G-S GODZA GTFYD HF~ HGD HQ2 HTVGU HVGLF HZI IHE IX1 JAAYA JBMMH JBS JEB JENOY JHFFW JKQEH JLS JLXEF JPM JSODD JST LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N9A P2W P4D Q11 QB0 ROL RX1 SA0 SUPJJ TN5 UB1 UPT VQP W99 WIH WIK WQJ WRC WXSBR XG1 ZZTAW ~KM 0R~ AAHBH ABXSQ ADACV AHBTC AHXOZ AILXY AITYG AQVQM BSCLL HGLYW IPSME OIG AAHQN AAMMB AAMNL AANHP AAYCA ABSQW ACHIC ACRPL ACYXJ ADNMO AEFGJ AEYWJ AFWVQ AGQPQ AGXDD AGYGG AIDQK AIDYY ALVPJ AAYXX AGHNM CITATION IQODW 7QG 7SN 7SS 7ST 7U6 C1K 7S9 L.6 1XC |
ID | FETCH-LOGICAL-c6478-2ef20c5cf8e6cd4dd647f48c98cb40c3a418161e82448aa98899dc7c27f6851a3 |
IEDL.DBID | DR2 |
ISSN | 1466-822X |
IngestDate | Wed Aug 13 07:45:20 EDT 2025 Fri Jul 11 18:27:25 EDT 2025 Thu Jul 10 23:28:18 EDT 2025 Fri Jul 25 03:57:43 EDT 2025 Wed Apr 02 07:16:17 EDT 2025 Tue Jul 01 01:46:05 EDT 2025 Thu Apr 24 23:00:56 EDT 2025 Wed Jan 22 16:21:53 EST 2025 Thu Jul 03 22:44:41 EDT 2025 Wed Oct 30 09:56:36 EDT 2024 Wed Dec 27 19:02:05 EST 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | Biological invasion Biodiversity hotspots spatial prioritization Hot spot Conservation Biogeography land-use change Ecology Vulnerability Biodiversity biological invasions Land use Dynamical climatology Climate change Global change Planetary scale Environmental monitoring Environmental protection conservation future area relationships biological invasion species distribution models responses impacts climate-change distributions communities |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor CC BY 4.0 Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c6478-2ef20c5cf8e6cd4dd647f48c98cb40c3a418161e82448aa98899dc7c27f6851a3 |
Notes | http://dx.doi.org/10.1111/geb.12228 istex:E07DB1F4D03EB3CFEC7B46DD6CD814C41607966F ArticleID:GEB12228 CNRS Biodiversa Eranet FFII Project Figure S1 Methodological choice of the threshold. Figure S2 Geographical distance (km) to the closest analogue climatic conditions between the current and future periods for the 21 continental hotspots for (a) the A1B emission scenario and (b) the B2A scenario. Figure S3 Boxplots of TSS and ROC values for the ensemble forecast projected model. Figure S4 Number of invasive alien species per pixel in the 34 hotspots compared to the rest of the world, for both current and future periods (A) A1 scenario on the left (B) B2 scenario on the right. Figure S5 Combined occurrences of 99 of 'the world's worst invasive species' across the world. Table S1 Number of endemic species in each of 34 biodiversity hotspots. Table S2 Environmental variables. Table S3 List of the 99 of 'the world's worst invasive species' with data sources and number of occurrences that were checked for each species. Table S4 Standardized Euclidian distance thresholds (SEDt) calculated for each hotspot. Table S5 Threatened endemic biodiversity due to climate change. Table S6 Kolmogorov-Smirnov test results comparing the distributions of number of endemic species affected by climate changes for each value of z. Table S7 Table of the rank for the 34 different hotspots according to number of endemic plant species for each hotspot (end.), the proportion of area protected by IUCN classification (I to IV) (PA), the percentage of climate loss (LCC), the potential number of invasive alien species in the future (IAS) and the percentage of future artificial land (LU) under A1B emission scenario. Supplementary text S1 Methodological details about species distribution models. French Agence Nationale de la Recherche (ANR) European Research Council under the European Community's Seven Framework Programme FP7/2007-2013 - No. 281422 Service du Patrimoine Naturel ark:/67375/WNG-SZJ71Z8Q-R ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-7686-4302 0000-0003-2012-1160 0000-0001-5830-1787 0000-0002-5388-5274 0000-0001-7605-4548 |
PQID | 1619271373 |
PQPubID | 1066347 |
PageCount | 11 |
ParticipantIDs | hal_primary_oai_HAL_hal_01374435v1 proquest_miscellaneous_1663577909 proquest_miscellaneous_1627985176 proquest_journals_1619271373 pascalfrancis_primary_28915467 crossref_citationtrail_10_1111_geb_12228 crossref_primary_10_1111_geb_12228 wiley_primary_10_1111_geb_12228_GEB12228 jstor_primary_43871452 istex_primary_ark_67375_WNG_SZJ71Z8Q_R fao_agris_US201500077627 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2014 |
PublicationDateYYYYMMDD | 2014-12-01 |
PublicationDate_xml | – month: 12 year: 2014 text: December 2014 |
PublicationDecade | 2010 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | Global ecology and biogeography |
PublicationTitleAlternate | Global Ecology and Biogeography |
PublicationYear | 2014 |
Publisher | Blackwell Science Blackwell Publishing Ltd John Wiley & Sons Ltd Blackwell Wiley Subscription Services, Inc Wiley |
Publisher_xml | – name: Blackwell Science – name: Blackwell Publishing Ltd – name: John Wiley & Sons Ltd – name: Blackwell – name: Wiley Subscription Services, Inc – name: Wiley |
References | Conservation International (2011) Hotspots. Conservation International, Arlington, VA. Available at: http://www.conservation.org/where/priority_areas/hotspots/Pages/hotspots_main.aspx (accessed 2 August 2012). Wiens, J.A., Stralberg, D., Jongsomjit, D., Howell, C.A. & Snyder, M.A. (2009) Niches, models, and climate change: assessing the assumptions and uncertainties. Proceedings of the National Academy of Sciences of the United States of America, 106, 19729-19736. Allouche, O., Tsoar, A. & Kadmon, R. (2006) Assessing the accuracy of species distribution models?: prevalence, kappa and the true skill statistic (TSS). Journal of Applied Ecology, 46, 1223-1232. Lorenzen, E.D., Nogués-Bravo, D., Orlando, L. et al. (2011) Species-specific responses of Late Quaternary megafauna to climate and humans. Nature, 479, 359-364. Araújo, M.B. & New, M. (2007) Ensemble forecasting of species distributions. Trends in Ecology and Evolution, 22, 42-47. Gassó, N., Pyšek, P., Vilà, M. & Williamson, M. (2010) Spreading to a limit: the time required for a neophyte to reach its maximum range. Diversity and Distributions, 16, 310-311. Lowe, S., Browne, M., Boudjelas, S. & De Poorter, M. (2000) 100 of the world's worst invasive alien species: a selection from the Global Invasive Species Database. Invasive Species Specialist Group, Auckland, New Zealand. Williams, J.W., Jackson, S.T. & Kutzbach, J.E. (2007) Projected distributions of novel and disappearing climates by 2100 AD. Proceedings of the National Academy of Sciences of the United States of America, 104, 5738-5742. Bellard, C., Thuiller, W., Leroy, B., Genovesi, P., Bakkenes, M. & Courchamp, F. (2013) Will climate change promote future invasions? Global Change Biology, 19, 3740-3748. Gallien, L., Münkemüller, T., Albert, C.H., Boulangeat, I. & Thuiller, W. (2010) Predicting potential distributions of invasive species: where to go from here? Diversity and Distributions, 16, 331-342. Harte, J. & Kinzig, A.P. (1997) On the implications of species-area relationships for endemism, spatial turnover, and food web patterns. Oikos, 80, 417-427. Simberloff, D., Martin, J.-L., Genovesi, P., Maris, V., Wardle, D.A., Aronson, J., Courchamp, F., Galil, B., García-Berthou, E., Pascal, M., Pyšek, P., Sousa, R., Tabacchi, E. & Vilà, M. (2013) Impacts of biological invasions: what's what and the way forward. Trends in Ecology and Evolution, 28, 58-66. Alkemade, R., van Oorschot, M., Miles, L., Nellemann, C., Bakkenes, M. & ten Brink, B. (2009) GLOBIO3: a framework to investigate options for reducing global terrestrial biodiversity loss. Ecosystems, 12, 374-390. Estes, L.D., Beukes, H., Bradley, B.A., Debats, S.R., Oppenheimer, M., Ruane, A.C., Schulze, R. & Tadross, M. (2013) Projected climate impacts to South African maize and wheat production in 2055: a comparison of empirical and mechanistic modeling approaches. Global Change Biology, 19, 3762-3774. Petitpierre, B., Kueffer, C., Broennimann, O., Randin, C., Daehler, C. & Guisan, A. (2012) Climatic niche shifts are rare among terrestrial plant invaders. Science, 335, 1344-1348. Beaumont, L.J., Pitman, A., Perkins, S., Zimmermann, N.E., Yoccoz, N.G. & Thuiller, W. (2010) Impacts of climate change on the world's most exceptional ecoregions. Proceedings of the National Academy of Sciences of the United States of America, 108, 2306-2311. Thomas, C.D. (2011) Translocation of species, climate change, and the end of trying to recreate past ecological communities. Trends in Ecology and Evolution, 26, 216-221. Mittermeier, R.A., Gil, P.R., Hoffman, M., Pilgrim, J., Brooks, T., Mittermeier, C.G., Lamoreux, J. & da Fonseca, G.A.B. (2004) Hotspots revisited: earth's biologically richest and most endangered terrestrial ecoregions. University of Chicago Press, Chicago, IL. Grigulis, K., Lavorel, S., Davies, I.D., Dossantos, A., Lloret, F. & Vilà, M. (2005) Landscape-scale positive feedbacks between fire and expansion of the large tussock grass, Ampelodesmos mauritanica in Catalan shrublands. Global Change Biology, 11, 1042-1053. Bergl, R.A., Oates, J.F. & Fotso, R. (2007) Distribution and protected area coverage of endemic taxa in West Africa's Biafran forests and highlands. Biological Conservation, 134, 195-208. Veloz, S.D., Williams, J.W., Blois, J.L., He, F., Otto-Bliesner, B. & Liu, Z.-Y. (2012) No-analog climates and shifting realized niches during the late quaternary: implications for 21st-century predictions by species distribution models. Global Change Biology, 18, 1698-1713. Brooks, T.M., Mittermeier, R.A., Mittermeier, C.G., Da Fonseca, G.A.B., Rylands, A.B., Konstant, W.R., Flick, P., Pilgrim, J., Oldfield, S., Magin, G. & Hilton-Taylor, C. (2002) Habitat loss and extinction in the hotspots of biodiversity. Conservation Biology, 16, 909-923. Bellard, C., Bertelsmeier, C., Leadley, P., Thuiller, W. & Courchamp, F. (2012) Impacts of climate change on the future of biodiversity. Ecology Letters, 15, 365-377. Brooks, M.L., D'Antonio, C.M., Richardson, D.M., Grace, J.B., Keeley, J.E., DiTomaso, J.M., Hobbs, R.J., Pellant, M. & Pyke, D. (2004) Effects of invasive alien plants on fire regimes. BioScience, 54, 677-688. Bacon, S.J., Aebi, A., Calanca, P. & Bacher, S. (2013) Quarantine arthropod invasions in Europe: the role of climate, hosts and propagule pressure. Diversity and Distributions, 20, 84-94. Bartholomé, E. & Belward, A.S. (2005) GLC2000: a new approach to global land cover mapping from Earth observation data. International Journal of Remote Sensing, 26, 1959-1977. Oswald, W.W., Brubaker, L.B., Hu, F.S. & Gavin, D.G. (2003) Pollen-vegetation calibration for tundra communities in the Arctic Foothills, northern Alaska. Journal of Ecology, 91, 1022-1033. R Core Team (2012) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Broennimann, O., Treier, U.A., Müller-Schärer, H., Thuiller, W., Peterson, A.T. & Guisan, A. (2007) Evidence of climatic niche shift during biological invasion. Ecology Letters, 10, 701-709. Hodgson, J.A., Thomas, C.D., Wintle, B.A. & Moilanen, A. (2009) Climate change, connectivity and conservation decision making: back to basics. Journal of Applied Ecology, 46, 964-969. Myers, N., Mittermeier, R.A., Mittermeier, C.G., da Fonseca, G.A.B. & Kent, J. (2000) Biodiversity hotspots for conservation priorities. Nature, 403, 853-858. Parmesan, C. (2006) Ecological and evolutionary responses to recent climate change. Annual Review of Ecology, Evolution, and Systematics, 37, 637-669. Horner-Devine, M.C., Lage, M., Hughes, J.B. & Bohannan, B.J.M. (2004) A taxa-area relationship for bacteria. Nature, 432, 750-753. Pressey, R.L., Cabeza, M., Watts, M.E., Cowling, R.M. & Wilson, K.A. (2007) Conservation planning in a changing world. Trends in Ecology and Evolution, 22, 583-592. Thuiller, W., Lafourcade, B., Engler, R. & Araújo, M.B. (2009) BIOMOD - a platform for ensemble forecasting of species distributions. Ecography, 32, 369-373. McGeoch, M.A., Butchart, S.H.M., Spear, D., Marais, E., Kleynhans, E.J., Symes, A., Chanson, J. & Hoffmann, M. (2010) Global indicators of biological invasion: species numbers, biodiversity impact and policy responses. Diversity and Distributions, 16, 95-108. IPCC Core Writing Team, Pachaury, R.K. & Reisinger, A. (2007) Contribution of working groups I, II, and III to the fourth assessment report of the intergovernmental panel on climate change. IPCC, Geneva, Switzerland. Rosenzweig, M.L. (1995) Species diversity in space and time. Cambridge University Press, Cambridge, UK. Malcolm, J.R., Liu, C.-R., Neilson, R.P., Hansen, L. & Hannah, L. (2006) Global warming and extinctions of endemic species from biodiversity hotspots. Conservation Biology, 20, 538-548. Kinzig, A.P. & Harte, J. (2000) Implications of endemics-area relationships for estimates of species extinction. Ecology, 81, 3305-3311. Lavergne, S., Mouquet, N., Thuiller, W. & Ronce, O. (2010) Biodiversity and climate change: integrating evolutionary and ecological responses of species and communities. Annual Review of Ecology, Evolution, and Systematics, 41, 321-350. Hof, A.R., Jansson, R. & Nilsson, C. (2012) How biotic interactions may alter future predictions of species distributions: future threats to the persistence of the arctic fox in Fennoscandia. Diversity and Distributions, 18, 554-562. Jiménez-Valverde, A. (2011) Insights into the area under the receiver operating characteristic curve (AUC) as a discrimination measure in species distribution modelling. Global Ecology and Biogeography, 5, 498-507. Fielding, A.H. & Bell, J.F. (1997) A review of methods for the assessment of prediction errors in conservation presence/absence models. Environmental Conservation, 24, 38-49. Murdoch, W., Polasky, S., Wilson, K.A., Possingham, H.P., Kareiva, P. & Shaw, R. (2007) Maximizing return on investment in conservation. Biological Conservation, 139, 375-388. Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G. & Jarvis, A. (2005) Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25, 1965-1978. 2002; 16 1997; 80 2011; 479 2007; 104 2009; 46 2010; 16 2013; 28 2012 2010; 108 2011 2013; 20 1997; 24 2006; 37 2007 1995 2012; 18 2004 2012; 15 2005; 26 2007; 10 2011; 5 2010; 41 2005; 25 2009; 12 2013; 19 2004; 54 2007; 134 2006; 20 2003; 91 2009; 32 2004; 432 2007; 139 2006; 46 2000 2000; 403 2000; 81 2011; 26 2012; 335 2007; 22 2005; 11 2009; 106 e_1_2_6_32_1 e_1_2_6_10_1 e_1_2_6_30_1 Conservation International (e_1_2_6_14_1) 2011 e_1_2_6_19_1 Lowe S. (e_1_2_6_31_1) 2000 Schmitt C.B. (e_1_2_6_43_1) 2012 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_35_1 e_1_2_6_11_1 e_1_2_6_12_1 IPCC Core Writing Team (e_1_2_6_26_1) 2007 e_1_2_6_33_1 e_1_2_6_17_1 Cowling R.M. (e_1_2_6_15_1) 1995 e_1_2_6_18_1 Mittermeier R.A. (e_1_2_6_34_1) 2004 e_1_2_6_39_1 e_1_2_6_38_1 e_1_2_6_16_1 e_1_2_6_37_1 R Core Team (e_1_2_6_41_1) 2012 e_1_2_6_42_1 e_1_2_6_21_1 e_1_2_6_20_1 e_1_2_6_40_1 e_1_2_6_9_1 e_1_2_6_8_1 e_1_2_6_5_1 e_1_2_6_4_1 e_1_2_6_7_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_48_1 e_1_2_6_24_1 e_1_2_6_49_1 e_1_2_6_3_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_22_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_28_1 e_1_2_6_45_1 e_1_2_6_46_1 Jiménez‐Valverde A. (e_1_2_6_27_1) 2011; 5 e_1_2_6_47_1 |
References_xml | – reference: Araújo, M.B. & New, M. (2007) Ensemble forecasting of species distributions. Trends in Ecology and Evolution, 22, 42-47. – reference: Jiménez-Valverde, A. (2011) Insights into the area under the receiver operating characteristic curve (AUC) as a discrimination measure in species distribution modelling. Global Ecology and Biogeography, 5, 498-507. – reference: Harte, J. & Kinzig, A.P. (1997) On the implications of species-area relationships for endemism, spatial turnover, and food web patterns. Oikos, 80, 417-427. – reference: Hof, A.R., Jansson, R. & Nilsson, C. (2012) How biotic interactions may alter future predictions of species distributions: future threats to the persistence of the arctic fox in Fennoscandia. Diversity and Distributions, 18, 554-562. – reference: Horner-Devine, M.C., Lage, M., Hughes, J.B. & Bohannan, B.J.M. (2004) A taxa-area relationship for bacteria. Nature, 432, 750-753. – reference: Simberloff, D., Martin, J.-L., Genovesi, P., Maris, V., Wardle, D.A., Aronson, J., Courchamp, F., Galil, B., García-Berthou, E., Pascal, M., Pyšek, P., Sousa, R., Tabacchi, E. & Vilà, M. (2013) Impacts of biological invasions: what's what and the way forward. Trends in Ecology and Evolution, 28, 58-66. – reference: Malcolm, J.R., Liu, C.-R., Neilson, R.P., Hansen, L. & Hannah, L. (2006) Global warming and extinctions of endemic species from biodiversity hotspots. Conservation Biology, 20, 538-548. – reference: Pressey, R.L., Cabeza, M., Watts, M.E., Cowling, R.M. & Wilson, K.A. (2007) Conservation planning in a changing world. Trends in Ecology and Evolution, 22, 583-592. – reference: Thomas, C.D. (2011) Translocation of species, climate change, and the end of trying to recreate past ecological communities. Trends in Ecology and Evolution, 26, 216-221. – reference: Veloz, S.D., Williams, J.W., Blois, J.L., He, F., Otto-Bliesner, B. & Liu, Z.-Y. (2012) No-analog climates and shifting realized niches during the late quaternary: implications for 21st-century predictions by species distribution models. Global Change Biology, 18, 1698-1713. – reference: Alkemade, R., van Oorschot, M., Miles, L., Nellemann, C., Bakkenes, M. & ten Brink, B. (2009) GLOBIO3: a framework to investigate options for reducing global terrestrial biodiversity loss. Ecosystems, 12, 374-390. – reference: Allouche, O., Tsoar, A. & Kadmon, R. (2006) Assessing the accuracy of species distribution models?: prevalence, kappa and the true skill statistic (TSS). Journal of Applied Ecology, 46, 1223-1232. – reference: Lorenzen, E.D., Nogués-Bravo, D., Orlando, L. et al. (2011) Species-specific responses of Late Quaternary megafauna to climate and humans. Nature, 479, 359-364. – reference: Mittermeier, R.A., Gil, P.R., Hoffman, M., Pilgrim, J., Brooks, T., Mittermeier, C.G., Lamoreux, J. & da Fonseca, G.A.B. (2004) Hotspots revisited: earth's biologically richest and most endangered terrestrial ecoregions. University of Chicago Press, Chicago, IL. – reference: Hodgson, J.A., Thomas, C.D., Wintle, B.A. & Moilanen, A. (2009) Climate change, connectivity and conservation decision making: back to basics. Journal of Applied Ecology, 46, 964-969. – reference: IPCC Core Writing Team, Pachaury, R.K. & Reisinger, A. (2007) Contribution of working groups I, II, and III to the fourth assessment report of the intergovernmental panel on climate change. IPCC, Geneva, Switzerland. – reference: Lavergne, S., Mouquet, N., Thuiller, W. & Ronce, O. (2010) Biodiversity and climate change: integrating evolutionary and ecological responses of species and communities. Annual Review of Ecology, Evolution, and Systematics, 41, 321-350. – reference: Gallien, L., Münkemüller, T., Albert, C.H., Boulangeat, I. & Thuiller, W. (2010) Predicting potential distributions of invasive species: where to go from here? Diversity and Distributions, 16, 331-342. – reference: Bellard, C., Bertelsmeier, C., Leadley, P., Thuiller, W. & Courchamp, F. (2012) Impacts of climate change on the future of biodiversity. Ecology Letters, 15, 365-377. – reference: Wiens, J.A., Stralberg, D., Jongsomjit, D., Howell, C.A. & Snyder, M.A. (2009) Niches, models, and climate change: assessing the assumptions and uncertainties. Proceedings of the National Academy of Sciences of the United States of America, 106, 19729-19736. – reference: Conservation International (2011) Hotspots. Conservation International, Arlington, VA. Available at: http://www.conservation.org/where/priority_areas/hotspots/Pages/hotspots_main.aspx (accessed 2 August 2012). – reference: Oswald, W.W., Brubaker, L.B., Hu, F.S. & Gavin, D.G. (2003) Pollen-vegetation calibration for tundra communities in the Arctic Foothills, northern Alaska. Journal of Ecology, 91, 1022-1033. – reference: Bellard, C., Thuiller, W., Leroy, B., Genovesi, P., Bakkenes, M. & Courchamp, F. (2013) Will climate change promote future invasions? Global Change Biology, 19, 3740-3748. – reference: Rosenzweig, M.L. (1995) Species diversity in space and time. Cambridge University Press, Cambridge, UK. – reference: Broennimann, O., Treier, U.A., Müller-Schärer, H., Thuiller, W., Peterson, A.T. & Guisan, A. (2007) Evidence of climatic niche shift during biological invasion. Ecology Letters, 10, 701-709. – reference: Brooks, M.L., D'Antonio, C.M., Richardson, D.M., Grace, J.B., Keeley, J.E., DiTomaso, J.M., Hobbs, R.J., Pellant, M. & Pyke, D. (2004) Effects of invasive alien plants on fire regimes. BioScience, 54, 677-688. – reference: R Core Team (2012) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. – reference: Fielding, A.H. & Bell, J.F. (1997) A review of methods for the assessment of prediction errors in conservation presence/absence models. Environmental Conservation, 24, 38-49. – reference: Grigulis, K., Lavorel, S., Davies, I.D., Dossantos, A., Lloret, F. & Vilà, M. (2005) Landscape-scale positive feedbacks between fire and expansion of the large tussock grass, Ampelodesmos mauritanica in Catalan shrublands. Global Change Biology, 11, 1042-1053. – reference: McGeoch, M.A., Butchart, S.H.M., Spear, D., Marais, E., Kleynhans, E.J., Symes, A., Chanson, J. & Hoffmann, M. (2010) Global indicators of biological invasion: species numbers, biodiversity impact and policy responses. Diversity and Distributions, 16, 95-108. – reference: Petitpierre, B., Kueffer, C., Broennimann, O., Randin, C., Daehler, C. & Guisan, A. (2012) Climatic niche shifts are rare among terrestrial plant invaders. Science, 335, 1344-1348. – reference: Bartholomé, E. & Belward, A.S. (2005) GLC2000: a new approach to global land cover mapping from Earth observation data. International Journal of Remote Sensing, 26, 1959-1977. – reference: Brooks, T.M., Mittermeier, R.A., Mittermeier, C.G., Da Fonseca, G.A.B., Rylands, A.B., Konstant, W.R., Flick, P., Pilgrim, J., Oldfield, S., Magin, G. & Hilton-Taylor, C. (2002) Habitat loss and extinction in the hotspots of biodiversity. Conservation Biology, 16, 909-923. – reference: Lowe, S., Browne, M., Boudjelas, S. & De Poorter, M. (2000) 100 of the world's worst invasive alien species: a selection from the Global Invasive Species Database. Invasive Species Specialist Group, Auckland, New Zealand. – reference: Williams, J.W., Jackson, S.T. & Kutzbach, J.E. (2007) Projected distributions of novel and disappearing climates by 2100 AD. Proceedings of the National Academy of Sciences of the United States of America, 104, 5738-5742. – reference: Myers, N., Mittermeier, R.A., Mittermeier, C.G., da Fonseca, G.A.B. & Kent, J. (2000) Biodiversity hotspots for conservation priorities. Nature, 403, 853-858. – reference: Thuiller, W., Lafourcade, B., Engler, R. & Araújo, M.B. (2009) BIOMOD - a platform for ensemble forecasting of species distributions. Ecography, 32, 369-373. – reference: Bergl, R.A., Oates, J.F. & Fotso, R. (2007) Distribution and protected area coverage of endemic taxa in West Africa's Biafran forests and highlands. Biological Conservation, 134, 195-208. – reference: Gassó, N., Pyšek, P., Vilà, M. & Williamson, M. (2010) Spreading to a limit: the time required for a neophyte to reach its maximum range. Diversity and Distributions, 16, 310-311. – reference: Kinzig, A.P. & Harte, J. (2000) Implications of endemics-area relationships for estimates of species extinction. Ecology, 81, 3305-3311. – reference: Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G. & Jarvis, A. (2005) Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25, 1965-1978. – reference: Beaumont, L.J., Pitman, A., Perkins, S., Zimmermann, N.E., Yoccoz, N.G. & Thuiller, W. (2010) Impacts of climate change on the world's most exceptional ecoregions. Proceedings of the National Academy of Sciences of the United States of America, 108, 2306-2311. – reference: Bacon, S.J., Aebi, A., Calanca, P. & Bacher, S. (2013) Quarantine arthropod invasions in Europe: the role of climate, hosts and propagule pressure. Diversity and Distributions, 20, 84-94. – reference: Estes, L.D., Beukes, H., Bradley, B.A., Debats, S.R., Oppenheimer, M., Ruane, A.C., Schulze, R. & Tadross, M. (2013) Projected climate impacts to South African maize and wheat production in 2055: a comparison of empirical and mechanistic modeling approaches. Global Change Biology, 19, 3762-3774. – reference: Parmesan, C. (2006) Ecological and evolutionary responses to recent climate change. Annual Review of Ecology, Evolution, and Systematics, 37, 637-669. – reference: Murdoch, W., Polasky, S., Wilson, K.A., Possingham, H.P., Kareiva, P. & Shaw, R. (2007) Maximizing return on investment in conservation. Biological Conservation, 139, 375-388. – year: 2011 – volume: 19 start-page: 3762 year: 2013 end-page: 3774 article-title: Projected climate impacts to South African maize and wheat production in 2055: a comparison of empirical and mechanistic modeling approaches publication-title: Global Change Biology – volume: 91 start-page: 1022 year: 2003 end-page: 1033 article-title: Pollen‐vegetation calibration for tundra communities in the Arctic Foothills, northern Alaska publication-title: Journal of Ecology – volume: 16 start-page: 310 year: 2010 end-page: 311 article-title: Spreading to a limit: the time required for a neophyte to reach its maximum range publication-title: Diversity and Distributions – volume: 24 start-page: 38 year: 1997 end-page: 49 article-title: A review of methods for the assessment of prediction errors in conservation presence/absence models publication-title: Environmental Conservation – volume: 18 start-page: 1698 year: 2012 end-page: 1713 article-title: No‐analog climates and shifting realized niches during the late quaternary: implications for 21st‐century predictions by species distribution models publication-title: Global Change Biology – volume: 15 start-page: 365 year: 2012 end-page: 377 article-title: Impacts of climate change on the future of biodiversity publication-title: Ecology Letters – volume: 54 start-page: 677 year: 2004 end-page: 688 article-title: Effects of invasive alien plants on fire regimes publication-title: BioScience – volume: 106 start-page: 19729 year: 2009 end-page: 19736 article-title: Niches, models, and climate change: assessing the assumptions and uncertainties publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 81 start-page: 3305 year: 2000 end-page: 3311 article-title: Implications of endemics–area relationships for estimates of species extinction publication-title: Ecology – year: 2007 – volume: 28 start-page: 58 year: 2013 end-page: 66 article-title: Impacts of biological invasions: what's what and the way forward publication-title: Trends in Ecology and Evolution – volume: 10 start-page: 701 year: 2007 end-page: 709 article-title: Evidence of climatic niche shift during biological invasion publication-title: Ecology Letters – volume: 16 start-page: 331 year: 2010 end-page: 342 article-title: Predicting potential distributions of invasive species: where to go from here? publication-title: Diversity and Distributions – year: 2000 – volume: 5 start-page: 498 year: 2011 end-page: 507 article-title: Insights into the area under the receiver operating characteristic curve (AUC) as a discrimination measure in species distribution modelling publication-title: Global Ecology and Biogeography – volume: 46 start-page: 1223 year: 2006 end-page: 1232 article-title: Assessing the accuracy of species distribution models?: prevalence, kappa and the true skill statistic (TSS) publication-title: Journal of Applied Ecology – volume: 46 start-page: 964 year: 2009 end-page: 969 article-title: Climate change, connectivity and conservation decision making: back to basics publication-title: Journal of Applied Ecology – volume: 432 start-page: 750 year: 2004 end-page: 753 article-title: A taxa–area relationship for bacteria publication-title: Nature – volume: 16 start-page: 909 year: 2002 end-page: 923 article-title: Habitat loss and extinction in the hotspots of biodiversity publication-title: Conservation Biology – volume: 18 start-page: 554 year: 2012 end-page: 562 article-title: How biotic interactions may alter future predictions of species distributions: future threats to the persistence of the arctic fox in Fennoscandia publication-title: Diversity and Distributions – volume: 139 start-page: 375 year: 2007 end-page: 388 article-title: Maximizing return on investment in conservation publication-title: Biological Conservation – volume: 80 start-page: 417 year: 1997 end-page: 427 article-title: On the implications of species‐area relationships for endemism, spatial turnover, and food web patterns publication-title: Oikos – volume: 25 start-page: 1965 year: 2005 end-page: 1978 article-title: Very high resolution interpolated climate surfaces for global land areas publication-title: International Journal of Climatology – volume: 22 start-page: 583 year: 2007 end-page: 592 article-title: Conservation planning in a changing world publication-title: Trends in Ecology and Evolution – year: 2012 – volume: 37 start-page: 637 year: 2006 end-page: 669 article-title: Ecological and evolutionary responses to recent climate change publication-title: Annual Review of Ecology, Evolution, and Systematics – volume: 12 start-page: 374 year: 2009 end-page: 390 article-title: GLOBIO3: a framework to investigate options for reducing global terrestrial biodiversity loss publication-title: Ecosystems – volume: 104 start-page: 5738 year: 2007 end-page: 5742 article-title: Projected distributions of novel and disappearing climates by 2100 AD publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 26 start-page: 216 year: 2011 end-page: 221 article-title: Translocation of species, climate change, and the end of trying to recreate past ecological communities publication-title: Trends in Ecology and Evolution – volume: 22 start-page: 42 year: 2007 end-page: 47 article-title: Ensemble forecasting of species distributions publication-title: Trends in Ecology and Evolution – volume: 403 start-page: 853 year: 2000 end-page: 858 article-title: Biodiversity hotspots for conservation priorities publication-title: Nature – volume: 41 start-page: 321 year: 2010 end-page: 350 article-title: Biodiversity and climate change: integrating evolutionary and ecological responses of species and communities publication-title: Annual Review of Ecology, Evolution, and Systematics – start-page: 174 year: 1995 end-page: 191 – year: 2004 – volume: 335 start-page: 1344 year: 2012 end-page: 1348 article-title: Climatic niche shifts are rare among terrestrial plant invaders publication-title: Science – volume: 11 start-page: 1042 year: 2005 end-page: 1053 article-title: Landscape‐scale positive feedbacks between fire and expansion of the large tussock grass, in Catalan shrublands publication-title: Global Change Biology – year: 1995 – volume: 134 start-page: 195 year: 2007 end-page: 208 article-title: Distribution and protected area coverage of endemic taxa in West Africa's Biafran forests and highlands publication-title: Biological Conservation – volume: 20 start-page: 538 year: 2006 end-page: 548 article-title: Global warming and extinctions of endemic species from biodiversity hotspots publication-title: Conservation Biology – volume: 479 start-page: 359 year: 2011 end-page: 364 article-title: Species‐specific responses of Late Quaternary megafauna to climate and humans publication-title: Nature – volume: 108 start-page: 2306 year: 2010 end-page: 2311 article-title: Impacts of climate change on the world's most exceptional ecoregions publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 16 start-page: 95 year: 2010 end-page: 108 article-title: Global indicators of biological invasion: species numbers, biodiversity impact and policy responses publication-title: Diversity and Distributions – volume: 32 start-page: 369 year: 2009 end-page: 373 article-title: BIOMOD – a platform for ensemble forecasting of species distributions publication-title: Ecography – volume: 20 start-page: 84 year: 2013 end-page: 94 article-title: Quarantine arthropod invasions in Europe: the role of climate, hosts and propagule pressure publication-title: Diversity and Distributions – volume: 26 start-page: 1959 year: 2005 end-page: 1977 article-title: GLC2000: a new approach to global land cover mapping from Earth observation data publication-title: International Journal of Remote Sensing – volume: 19 start-page: 3740 year: 2013 end-page: 3748 article-title: Will climate change promote future invasions? publication-title: Global Change Biology – start-page: 23 year: 2012 end-page: 42 – volume-title: Hotspots revisited: earth's biologically richest and most endangered terrestrial ecoregions year: 2004 ident: e_1_2_6_34_1 – ident: e_1_2_6_32_1 doi: 10.1111/j.1472-4642.2009.00633.x – ident: e_1_2_6_3_1 doi: 10.1111/j.1365-2664.2006.01214.x – ident: e_1_2_6_5_1 doi: 10.1111/ddi.12149 – ident: e_1_2_6_38_1 doi: 10.1111/j.0014-3820.2006.tb01872.x – ident: e_1_2_6_19_1 doi: 10.1111/j.1472-4642.2010.00647.x – ident: e_1_2_6_33_1 doi: 10.1111/j.1523-1739.2006.00364.x – ident: e_1_2_6_24_1 doi: 10.1111/j.1472-4642.2011.00876.x – volume-title: 100 of the world's worst invasive alien species: a selection from the Global Invasive Species Database year: 2000 ident: e_1_2_6_31_1 – ident: e_1_2_6_49_1 doi: 10.1073/pnas.0606292104 – volume: 5 start-page: 498 year: 2011 ident: e_1_2_6_27_1 article-title: Insights into the area under the receiver operating characteristic curve (AUC) as a discrimination measure in species distribution modelling publication-title: Global Ecology and Biogeography – ident: e_1_2_6_44_1 doi: 10.1016/j.tree.2012.07.013 – ident: e_1_2_6_29_1 doi: 10.1146/annurev-ecolsys-102209-144628 – ident: e_1_2_6_47_1 doi: 10.1111/j.1365-2486.2011.02635.x – ident: e_1_2_6_21_1 doi: 10.2307/3546614 – ident: e_1_2_6_20_1 doi: 10.1111/j.1365-2486.2005.00980.x – ident: e_1_2_6_8_1 doi: 10.1111/j.1461-0248.2011.01736.x – ident: e_1_2_6_12_1 doi: 10.1641/0006-3568(2004)054[0677:EOIAPO]2.0.CO;2 – ident: e_1_2_6_2_1 doi: 10.1007/s10021-009-9229-5 – ident: e_1_2_6_6_1 doi: 10.1080/01431160412331291297 – ident: e_1_2_6_48_1 doi: 10.1073/pnas.0901639106 – ident: e_1_2_6_36_1 doi: 10.1038/35002501 – start-page: 23 volume-title: Biodiversity hotspots: distribution and protection of conservation priority areas year: 2012 ident: e_1_2_6_43_1 – ident: e_1_2_6_11_1 doi: 10.1111/j.1461-0248.2007.01060.x – ident: e_1_2_6_35_1 doi: 10.1016/j.biocon.2007.07.011 – ident: e_1_2_6_42_1 doi: 10.1111/j.2006.0906-7590.04272.x – ident: e_1_2_6_28_1 doi: 10.1890/0012-9658(2000)081[3305:IOEARF]2.0.CO;2 – ident: e_1_2_6_4_1 doi: 10.1016/j.tree.2006.09.010 – ident: e_1_2_6_37_1 doi: 10.1046/j.1365-2745.2003.00823.x – volume-title: Hotspots year: 2011 ident: e_1_2_6_14_1 – ident: e_1_2_6_13_1 doi: 10.1046/j.1523-1739.2002.00530.x – ident: e_1_2_6_39_1 doi: 10.1126/science.1215933 – volume-title: R: a language and environment for statistical computing year: 2012 ident: e_1_2_6_41_1 – ident: e_1_2_6_45_1 doi: 10.1016/j.tree.2011.02.006 – ident: e_1_2_6_10_1 doi: 10.1016/j.biocon.2006.08.013 – ident: e_1_2_6_30_1 doi: 10.1038/nature10574 – start-page: 174 volume-title: Global biodiversity assessment year: 1995 ident: e_1_2_6_15_1 – ident: e_1_2_6_18_1 doi: 10.1111/j.1472-4642.2010.00652.x – ident: e_1_2_6_17_1 doi: 10.1017/S0376892997000088 – ident: e_1_2_6_46_1 doi: 10.1111/j.1600-0587.2008.05742.x – ident: e_1_2_6_9_1 doi: 10.1111/gcb.12344 – ident: e_1_2_6_7_1 doi: 10.1073/pnas.1007217108 – ident: e_1_2_6_40_1 doi: 10.1016/j.tree.2007.10.001 – ident: e_1_2_6_25_1 doi: 10.1038/nature03073 – volume-title: Contribution of working groups I, II, and III to the fourth assessment report of the intergovernmental panel on climate change year: 2007 ident: e_1_2_6_26_1 – ident: e_1_2_6_16_1 doi: 10.1111/gcb.12325 – ident: e_1_2_6_22_1 doi: 10.1002/joc.1276 – ident: e_1_2_6_23_1 doi: 10.1111/j.1365-2664.2009.01695.x |
SSID | ssj0005456 |
Score | 2.57004 |
Snippet | AIM: Global changes are predicted to have severe consequences for biodiversity; 34 biodiversity hotspots have become international priorities for conservation,... Aim: Global changes are predicted to have severe consequences for biodiversity; 34 biodiversity hotspots have become international priorities for conservation,... Aim Global changes are predicted to have severe consequences for biodiversity; 34 biodiversity hotspots have become international priorities for conservation,... Aim Global changes are predicted to have severe consequences for biodiversity; 34 biodiversity hotspots have become international priorities for conservation,... AimGlobal changes are predicted to have severe consequences for biodiversity; 34 biodiversity hotspots have become international priorities for conservation,... |
SourceID | hal proquest pascalfrancis crossref wiley jstor istex fao |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1376 |
SubjectTerms | Animal and plant ecology Animal, plant and microbial ecology Applied ecology Biodiversity Biodiversity and Ecology Biodiversity conservation Biodiversity hotspots Biological and medical sciences biological invasions climate Climate change Climatic zones Climatology. Bioclimatology. Climate change conservation Conservation biology Conservation, protection and management of environment and wildlife Earth, ocean, space Ecological invasion Ecoregions Endemic species Environmental Sciences Exact sciences and technology External geophysics forests Fundamental and applied biological sciences. Psychology General aspects Habitat conservation habitats introduced species Invasive species islands land-use change Meteorology monitoring Nonnative species Parks, reserves, wildlife conservation. Endangered species: population survey and restocking pastures spatial prioritization Synecology |
Title | Vulnerability of biodiversity hotspots to global change |
URI | https://api.istex.fr/ark:/67375/WNG-SZJ71Z8Q-R/fulltext.pdf https://www.jstor.org/stable/43871452 https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fgeb.12228 https://www.proquest.com/docview/1619271373 https://www.proquest.com/docview/1627985176 https://www.proquest.com/docview/1663577909 https://univ-rennes.hal.science/hal-01374435 |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9RAEF5qi-CL2urRaC1RRHzJcbvZZBN8quXao2jB1tOjCMvuZreVlos0ObH-9c5sfrRXVMSX48hNjmQyO_vN5ptvCXlJdWqgYIsjw4WLuLY0ym2SQM0jUkXjYqQ0diO_P0wnU34wS2Yr5E3XC9PoQ_QLbjgyfL7GAa50dWOQn1o9pLh-AfkXuVoIiI6upaMQGTSdRWkEk-CsVRVCFk9_5tJcdMepEj7PkA-5hi7-0VEUkS-pKnCZa_a6WAKjNyGtn5P2HpAv3d00VJTz4aLWQ_PzltDjf97uQ3K_xarhThNc62TFzjfI3bHXub7aIIPxdZMcmLVZonpExKfFBYpZe97tVVi6UH8ti44AEp6VNdTSdRXWZdjokYRN-_FjMt0bf9ydRO0GDZHBFtWIWcdGJjEus6kpeFHAUcczk2dG85GJFQf8kFKbAYbIlMozKO4KIwwTLgWkp-IBWZ2Xc7tJQqVhtjaU6dg5-BORKepY4USRM6OUigPyuntU0rTq5biJxoXsqhhwkPQOCsiL3vRbI9nxO6NNeN5SnUIqldNjhgs_XtqICTgfgqA_FfW3JzvvJB5DfUYOAPM7DcgrHyO9mbo8R46cSOTnw315fHIg6En2QR4FZOCDqDfkMdSoPGEB2V6Kqt4ASmDAtSlcx1YXZrJNLJWkWPAKuAzwyPP-Z0gJ-J5HzW25QBsmcvCvSP9mg0KEIh_l4Fkfd3_2ldwfv_Vfnvy76VNyD3zKG-LPFlmtLxf2GcC3Wm_7cfoLuHg8Mg |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEB_6gehL1erR1FqjiPiS4zbZZBPwpcq1Z70e2Pb0KJRls8m20nKRXk6sf70zm4_2REV8CSGZDZvJ7OxvNjO_BXjJ0khjwBZ4mgvj8TRnXpKHIcY8IlIsyHoqpWrkg1E0GPP9SThZgjdNLUzFD9EuuNHIsP6aBjgtSN8a5Wd52mW0gLEMq7Sjtw2oDm_IowgbVLVFkYfT4KTmFaI8nrbpwmy0bFSBx3PKiFwlJX9vkhQpY1LNUGmm2u1iAY7eBrV2Vtq9D6fN-1TJKBfdeZl29Y9fqB7_94UfwFoNV92dyr4ewlI-XYc7fUt1fb0Onf5NnRyK1Y5i9gjEp_kl8Vnb1NtrtzBu-qXImhwQ97woMZwuZ25ZuBUliVtVID-G8W7_-N3Aq_do8DRVqXp-bvyeDrWJ80hnPMvwquGxTmKd8p4OFEcIEbE8RhgRK5XEGN9lWmhfmAjBngo6sDItpvkGuCrFCVszPw2MwYeIWDHjZ0Zkia-VUoEDr5tvJXVNYE77aFzKJpBBBUmrIAdetKJfK9aO3wlt4AeX6gy9qRwf-bT2Y9mNfIHt0QrapkTBPdgZSrpGFI0cMeY35sArayStmLq6oDQ5EcrPoz15dLIv2En8UR460LFW1AryAMNUHvoObC-YVSuAUTBC2wj7sdXYmax9y0wyinkFdgM18ry9jV6BfvWoaV7MScYXCepXRH-TIS5CkfQS1Kw1vD_rSu7139qTzX8XfQZ3B8cHQzl8P_rwBO6hfnmVB7QFK-XVPH-KaK5Mt-2g_Qlf9EBN |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED_tQyBe-BhUC4wREEK8pGocJ07E02DtyhgVbHRUE5LlOPGGNjXTmiLGX8-d87EVAUK8RFFyjpzL-fw75-5ngOd-GmkM2AJPc2E8nua-l-RhiDGPiJQfZD2VUjXy-1E0HPPdSThZgldNLUzFD9EuuNHIsP6aBvh5Zq4N8uM87fq0frEMqzzqxWTS2_tX3FEEDarSosjDWXBS0wpRGk_bdGEyWjaqwOMJJUSuko6_NzmKlDCpZqgzU212sYBGr2NaOykN7sCX5nWqXJTT7rxMu_rHL0yP__m-d-F2DVbdrcq67sFSPl2DG31LdH25Bp3-VZUcitVuYnYfxOH8jNisbeLtpVsYN_1aZE0GiHtSlBhMlzO3LNyKkMSt6o8fwHjQ__Rm6NU7NHiaalQ9lhvW06E2cR7pjGcZXjU81kmsU97TgeIIICI_jxFExEolMUZ3mRaaCRMh1FNBB1amxTRfB1elOF1rn6WBMfgQESvfsMyILGFaKRU48LL5VFLX9OW0i8aZbMIYVJC0CnLgWSt6XnF2_E5oHb-3VMfoS-X4gNHKj-U2YgLboxG0TYmAe7i1J-kaETRyRJjffAdeWBtpxdTFKSXJiVB-Hu3Ig6Nd4R_FH-W-Ax1rRK0gDzBI5SFzYHPBqloBjIER2EbYj43GzGTtWWbSp4hXYDdQI0_b2-gT6EePmubFnGSYSFC_IvqbDDERiqSXoGat3f1ZV3Kn_9qePPx30Sdw88P2QO69Hb17BLdQvbxKAtqAlfJinj9GKFemm3bI_gSIGz8F |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Vulnerability+of+biodiversity+hotspots+to+global+change&rft.jtitle=Global+ecology+and+biogeography&rft.au=Bellard%2C+C%C3%A9line&rft.au=Leclerc%2C+Camille&rft.au=Leroy%2C+Boris&rft.au=Bakkenes%2C+Michel&rft.date=2014-12-01&rft.issn=1466-822X&rft.eissn=1466-8238&rft.volume=23&rft.issue=12&rft.spage=1376&rft.epage=1386&rft_id=info:doi/10.1111%2Fgeb.12228&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_geb_12228 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1466-822X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1466-822X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1466-822X&client=summon |