Mesenchymal-stem-cell-derived exosomes accelerate skeletal muscle regeneration

•Mesenchymal stem cell exosomes promoted myogenesis and angiogenesis in vitro.•Mesenchymal stem cell exosomes accelerated muscle regeneration in a mouse injury model.•Mesenchymal stem cell exosomes had low concentrations of repair-related cytokines.•Many repair-related microRNAs were identified in m...

Full description

Saved in:
Bibliographic Details
Published inFEBS letters Vol. 589; no. 11; pp. 1257 - 1265
Main Authors Nakamura, Yoshihiro, Miyaki, Shigeru, Ishitobi, Hiroyuki, Matsuyama, Sho, Nakasa, Tomoyuki, Kamei, Naosuke, Akimoto, Takayuki, Higashi, Yukihito, Ochi, Mitsuo
Format Journal Article
LanguageEnglish
Published England Elsevier B.V 08.05.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Mesenchymal stem cell exosomes promoted myogenesis and angiogenesis in vitro.•Mesenchymal stem cell exosomes accelerated muscle regeneration in a mouse injury model.•Mesenchymal stem cell exosomes had low concentrations of repair-related cytokines.•Many repair-related microRNAs were identified in mesenchymal stem cell exosomes.•MicroRNA-494 in mesenchymal stem cell exosomes enhanced myogenesis and angiogenesis. Mesenchymal stem cell (MSC) transplantation is used for treatment of many diseases. The paracrine role of MSCs in tissue regeneration is attracting particular attention. We investigate the role of MSC exosomes in skeletal muscle regeneration. MSC exosomes promote myogenesis and angiogenesis in vitro, and muscle regeneration in an in vivo model of muscle injury. Although MSC exosomes had low concentrations of muscle-repair-related cytokines, a number of repair-related miRNAs were identified. This study suggests that the MSC-derived exosomes promote muscle regeneration by enhancing myogenesis and angiogenesis, which is at least in part mediated by miRNAs such as miR-494.
AbstractList Mesenchymal stem cell (MSC) transplantation is used for treatment of many diseases. The paracrine role of MSCs in tissue regeneration is attracting particular attention. We investigate the role of MSC exosomes in skeletal muscle regeneration. MSC exosomes promote myogenesis and angiogenesis in vitro, and muscle regeneration in an in vivo model of muscle injury. Although MSC exosomes had low concentrations of muscle-repair-related cytokines, a number of repair-related miRNAs were identified. This study suggests that the MSC-derived exosomes promote muscle regeneration by enhancing myogenesis and angiogenesis, which is at least in part mediated by miRNAs such as miR-494.
•Mesenchymal stem cell exosomes promoted myogenesis and angiogenesis in vitro.•Mesenchymal stem cell exosomes accelerated muscle regeneration in a mouse injury model.•Mesenchymal stem cell exosomes had low concentrations of repair-related cytokines.•Many repair-related microRNAs were identified in mesenchymal stem cell exosomes.•MicroRNA-494 in mesenchymal stem cell exosomes enhanced myogenesis and angiogenesis. Mesenchymal stem cell (MSC) transplantation is used for treatment of many diseases. The paracrine role of MSCs in tissue regeneration is attracting particular attention. We investigate the role of MSC exosomes in skeletal muscle regeneration. MSC exosomes promote myogenesis and angiogenesis in vitro, and muscle regeneration in an in vivo model of muscle injury. Although MSC exosomes had low concentrations of muscle-repair-related cytokines, a number of repair-related miRNAs were identified. This study suggests that the MSC-derived exosomes promote muscle regeneration by enhancing myogenesis and angiogenesis, which is at least in part mediated by miRNAs such as miR-494.
Mesenchymal stem cell (MSC) transplantation is used for treatment of many diseases. The paracrine role of MSCs in tissue regeneration is attracting particular attention. We investigate the role of MSC exosomes in skeletal muscle regeneration. MSC exosomes promote myogenesis and angiogenesis in vitro, and muscle regeneration in an in vivo model of muscle injury. Although MSC exosomes had low concentrations of muscle‐repair‐related cytokines, a number of repair‐related miRNAs were identified. This study suggests that the MSC‐derived exosomes promote muscle regeneration by enhancing myogenesis and angiogenesis, which is at least in part mediated by miRNAs such as miR‐494. Mesenchymal stem cell exosomes promoted myogenesis and angiogenesis in vitro. Mesenchymal stem cell exosomes accelerated muscle regeneration in a mouse injury model. Mesenchymal stem cell exosomes had low concentrations of repair‐related cytokines. Many repair‐related microRNAs were identified in mesenchymal stem cell exosomes. MicroRNA‐494 in mesenchymal stem cell exosomes enhanced myogenesis and angiogenesis.
Author Matsuyama, Sho
Nakamura, Yoshihiro
Miyaki, Shigeru
Ochi, Mitsuo
Nakasa, Tomoyuki
Kamei, Naosuke
Akimoto, Takayuki
Ishitobi, Hiroyuki
Higashi, Yukihito
Author_xml – sequence: 1
  givenname: Yoshihiro
  orcidid: 0000-0002-7181-5739
  surname: Nakamura
  fullname: Nakamura, Yoshihiro
  email: nakamurayoshihiro0419@gmail.com
  organization: Department of Orthopedic Surgery, Hiroshima University, Hiroshima, Japan
– sequence: 2
  givenname: Shigeru
  surname: Miyaki
  fullname: Miyaki, Shigeru
  organization: Department of Orthopedic Surgery, Hiroshima University, Hiroshima, Japan
– sequence: 3
  givenname: Hiroyuki
  surname: Ishitobi
  fullname: Ishitobi, Hiroyuki
  organization: Department of Regenerative Medicine, Hiroshima University Hospital, Hiroshima, Japan
– sequence: 4
  givenname: Sho
  surname: Matsuyama
  fullname: Matsuyama, Sho
  organization: Department of Orthopedic Surgery, Hiroshima University, Hiroshima, Japan
– sequence: 5
  givenname: Tomoyuki
  surname: Nakasa
  fullname: Nakasa, Tomoyuki
  organization: Department of Orthopedic Surgery, Hiroshima University, Hiroshima, Japan
– sequence: 6
  givenname: Naosuke
  surname: Kamei
  fullname: Kamei, Naosuke
  organization: Department of Orthopedic Surgery, Hiroshima University, Hiroshima, Japan
– sequence: 7
  givenname: Takayuki
  surname: Akimoto
  fullname: Akimoto, Takayuki
  organization: Division of Regenerative Medical Engineering, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
– sequence: 8
  givenname: Yukihito
  surname: Higashi
  fullname: Higashi, Yukihito
  organization: Department of Regenerative Medicine, Hiroshima University Hospital, Hiroshima, Japan
– sequence: 9
  givenname: Mitsuo
  surname: Ochi
  fullname: Ochi, Mitsuo
  organization: Department of Orthopedic Surgery, Hiroshima University, Hiroshima, Japan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25862500$$D View this record in MEDLINE/PubMed
BookMark eNqNUk1v1DAUtFAR3RZ-AihHLlnes2MnEQdEq5YiFTgAZ8uxX8CLkxQ7W9h_j8NuL1wW6Un-mhnP8_iMnYzTSIw9R1gjoHq1WffUpUDzmgPKNYhc-IitsKlFKSrVnLAVAFalrFtxys5S2kBeN9g-YadcNopLgBX7-IESjfb7bjChTDMNpaUQSkfR35Mr6PeUpoFSYWzep2hmKtKPPJtNKIZtsoGKSN9oXI78ND5lj3sTEj07jOfs6_XVl8ub8vbTu_eXb29LqypVlQYlF8B7wUH1XPZYg6h71TqlCB3Kjtc9kTEKnG1s4zquuMVOKYROWN6Kc_Zyr3sXp59bSrMefFqcm5GmbdI898pRVNVxKKoGsFa1khn64gDddgM5fRf9YOJOPzxXBrzeA2ycUorUa-vnv43P0figEfQSjt7oQzh6CUeDyIWZLf9hP1xwjHez5_3ygXb_R9LXVxf88_IBlvwxm-fQVlnqzV6Kcjj3nqJO1uf8yflIdtZu8kfM_AEfLcDx
CitedBy_id crossref_primary_10_1021_acsbiomaterials_9b00607
crossref_primary_10_1007_s11914_019_00537_7
crossref_primary_10_3389_fgene_2022_915141
crossref_primary_10_12677_OJNS_2017_51004
crossref_primary_10_1016_j_semcdb_2022_05_027
crossref_primary_10_1016_j_jcyt_2018_11_012
crossref_primary_10_3390_cells11203222
crossref_primary_10_3390_ijms20030683
crossref_primary_10_1002_adfm_201909125
crossref_primary_10_2217_rme_2022_0141
crossref_primary_10_3389_fphys_2019_00828
crossref_primary_10_3389_fbioe_2020_615520
crossref_primary_10_3389_fcell_2021_661532
crossref_primary_10_47184_tev_2019_01_05
crossref_primary_10_1007_s12265_021_10200_1
crossref_primary_10_3390_biology10030172
crossref_primary_10_3390_ma14051078
crossref_primary_10_1007_s12011_020_02183_y
crossref_primary_10_3390_ijms25115916
crossref_primary_10_1016_j_biomaterials_2018_04_055
crossref_primary_10_1016_j_pharmthera_2016_10_005
crossref_primary_10_1002_advs_202207050
crossref_primary_10_1111_cpr_12359
crossref_primary_10_1016_j_ijcard_2018_04_028
crossref_primary_10_1089_cell_2019_0077
crossref_primary_10_3390_ijms252010877
crossref_primary_10_1002_cbin_11313
crossref_primary_10_3390_biom11081171
crossref_primary_10_1007_s13770_020_00324_x
crossref_primary_10_1016_j_ncrna_2017_03_003
crossref_primary_10_3390_ijms25115811
crossref_primary_10_1111_cpr_12233
crossref_primary_10_3390_ijms24097833
crossref_primary_10_1002_stem_2575
crossref_primary_10_1248_bpb_b20_00536
crossref_primary_10_1016_j_isci_2024_110784
crossref_primary_10_3389_fendo_2019_00846
crossref_primary_10_1007_s12015_016_9643_y
crossref_primary_10_3390_cells10082086
crossref_primary_10_3390_ijms22126182
crossref_primary_10_5005_jp_journals_10028_1279
crossref_primary_10_1089_ars_2019_7965
crossref_primary_10_1371_journal_pone_0284989
crossref_primary_10_1155_2021_9962194
crossref_primary_10_1007_s12576_017_0576_2
crossref_primary_10_1016_j_biocel_2017_01_016
crossref_primary_10_1016_j_msec_2018_04_006
crossref_primary_10_3390_pharmaceutics14040733
crossref_primary_10_1016_j_isci_2024_110307
crossref_primary_10_1155_2018_3530647
crossref_primary_10_4103_1673_5374_295269
crossref_primary_10_3390_ijms23169274
crossref_primary_10_18632_aging_101425
crossref_primary_10_1111_voxs_12212
crossref_primary_10_1186_s13287_020_01908_z
crossref_primary_10_1038_s41598_021_94365_4
crossref_primary_10_1038_s41598_017_01809_x
crossref_primary_10_37321_ujmh_2024_1_2_02
crossref_primary_10_3390_ijms20051108
crossref_primary_10_7603_s40730_016_0047_z
crossref_primary_10_1186_s13036_022_00301_z
crossref_primary_10_3389_fendo_2017_00336
crossref_primary_10_3390_ijms232314913
crossref_primary_10_1186_s13287_021_02594_1
crossref_primary_10_3389_fonc_2023_994340
crossref_primary_10_1111_odi_14153
crossref_primary_10_3389_fbioe_2023_1162263
crossref_primary_10_3390_cimb46060358
crossref_primary_10_1007_s11427_021_1997_2
crossref_primary_10_1016_j_bcp_2022_114954
crossref_primary_10_1016_j_trsl_2018_01_005
crossref_primary_10_1021_acs_nanolett_8b01816
crossref_primary_10_1155_2018_7231739
crossref_primary_10_3390_biom14030330
crossref_primary_10_3402_jev_v4_30087
crossref_primary_10_1002_sctm_18_0297
crossref_primary_10_1186_s13287_022_02723_4
crossref_primary_10_1155_2020_4176926
crossref_primary_10_1186_s12986_021_00565_0
crossref_primary_10_2460_javma_22_02_0060
crossref_primary_10_1186_s12967_024_05201_y
crossref_primary_10_1186_s13287_016_0391_3
crossref_primary_10_1016_j_jcyt_2022_11_010
crossref_primary_10_1186_s13287_019_1186_0
crossref_primary_10_1111_jcmm_14615
crossref_primary_10_1111_jcmm_15946
crossref_primary_10_1186_s13287_017_0648_5
crossref_primary_10_3389_fcell_2021_716853
crossref_primary_10_1016_j_acthis_2018_04_003
crossref_primary_10_15283_ijsc20167
crossref_primary_10_3390_ijms21186768
crossref_primary_10_1210_jc_2018_02547
crossref_primary_10_1002_1873_3468_12024
crossref_primary_10_12688_f1000research_21333_1
crossref_primary_10_3390_ijms22105346
crossref_primary_10_1016_j_jsb_2020_107474
crossref_primary_10_1002_jor_25143
crossref_primary_10_3389_fcell_2017_00006
crossref_primary_10_1016_j_sdentj_2022_04_006
crossref_primary_10_1002_btpr_3243
crossref_primary_10_15789_2220_7619_NPF_1940
crossref_primary_10_3892_br_2016_725
crossref_primary_10_3390_cells9010098
crossref_primary_10_1007_s00383_024_05812_y
crossref_primary_10_1016_j_bioactmat_2021_10_021
crossref_primary_10_1186_s13287_020_01872_8
crossref_primary_10_3389_fbioe_2019_00292
crossref_primary_10_1007_s10396_024_01429_9
crossref_primary_10_3390_ijms232415942
crossref_primary_10_1016_j_jconrel_2022_06_026
crossref_primary_10_3389_fbioe_2021_652970
crossref_primary_10_1016_j_biopha_2024_117665
crossref_primary_10_1038_s41467_023_40680_5
crossref_primary_10_1097_SHK_0000000000001002
crossref_primary_10_1002_sctm_16_0297
crossref_primary_10_1016_j_diff_2019_10_003
crossref_primary_10_1016_j_lfs_2019_01_052
crossref_primary_10_1155_2019_1983131
crossref_primary_10_1186_s40580_023_00398_y
crossref_primary_10_3389_fbioe_2022_1054370
crossref_primary_10_3389_fphar_2016_00231
crossref_primary_10_1097_BOR_0000000000000454
crossref_primary_10_1007_s10616_024_00675_6
crossref_primary_10_1016_j_reth_2020_11_002
crossref_primary_10_1155_2021_7232773
crossref_primary_10_1097_TA_0000000000002225
crossref_primary_10_1016_j_ymthe_2020_10_026
crossref_primary_10_14336_AD_2024_0280
crossref_primary_10_1016_j_ymthe_2016_11_019
crossref_primary_10_1177_2041731418810130
crossref_primary_10_1155_2020_5816723
crossref_primary_10_1016_j_jconrel_2018_01_022
crossref_primary_10_3390_ijms25116187
crossref_primary_10_3892_ijmm_2021_5054
crossref_primary_10_1016_j_biochi_2021_06_008
crossref_primary_10_4252_wjsc_v12_i3_178
crossref_primary_10_1016_j_jacbts_2020_08_005
crossref_primary_10_1093_hmg_ddw237
crossref_primary_10_1021_acs_analchem_0c02271
crossref_primary_10_1002_pmic_201600002
crossref_primary_10_1089_scd_2021_0006
crossref_primary_10_1186_s13287_019_1196_y
crossref_primary_10_3390_ijms20215467
crossref_primary_10_1007_s00266_022_03088_y
crossref_primary_10_1186_s13619_020_00047_3
crossref_primary_10_1113_EP087396
crossref_primary_10_1016_j_coph_2021_03_003
crossref_primary_10_1007_s11914_024_00866_2
crossref_primary_10_1007_s13770_018_0139_5
crossref_primary_10_1186_s13287_023_03409_1
crossref_primary_10_3390_ijms241512457
crossref_primary_10_2217_nnm_2021_0224
crossref_primary_10_1016_j_jconrel_2017_07_023
crossref_primary_10_1080_21688370_2018_1431038
crossref_primary_10_1007_s10815_019_01687_4
crossref_primary_10_1155_2020_4356359
crossref_primary_10_3389_fcvm_2021_737512
crossref_primary_10_1002_cbin_12107
crossref_primary_10_3389_fcell_2021_628339
crossref_primary_10_1016_j_bonr_2021_101093
crossref_primary_10_1038_s41598_017_10448_1
crossref_primary_10_3390_ijms21030727
crossref_primary_10_1111_prd_12520
crossref_primary_10_1186_s13287_019_1469_5
crossref_primary_10_1002_jex2_72
crossref_primary_10_1016_j_bbagen_2016_07_028
crossref_primary_10_1016_j_jcyt_2018_06_012
crossref_primary_10_1155_2016_6093601
crossref_primary_10_1089_ten_tea_2019_0125
crossref_primary_10_1093_humrep_dey344
crossref_primary_10_1038_s41598_018_19581_x
crossref_primary_10_3390_ijms24032085
crossref_primary_10_2147_IJN_S407029
crossref_primary_10_1186_s13036_024_00431_6
crossref_primary_10_3389_fncel_2022_992221
crossref_primary_10_1016_j_ijpharm_2021_120298
crossref_primary_10_1002_term_3355
crossref_primary_10_3390_pharmaceutics12121135
crossref_primary_10_1016_j_ejps_2016_09_017
crossref_primary_10_1016_j_jcyt_2023_04_011
crossref_primary_10_1007_s00018_020_03454_6
crossref_primary_10_3389_fcell_2020_00665
crossref_primary_10_1002_jcsm_12316
crossref_primary_10_1097_TA_0000000000002661
crossref_primary_10_3389_fimmu_2018_02538
crossref_primary_10_1155_2022_8537959
crossref_primary_10_1007_s10495_015_1203_4
crossref_primary_10_3390_ijms222413454
crossref_primary_10_1002_adhm_202301112
crossref_primary_10_1186_s13287_019_1182_4
crossref_primary_10_1186_s41232_023_00308_z
crossref_primary_10_1007_s12015_018_9817_x
crossref_primary_10_3390_ijms22073645
crossref_primary_10_1016_j_envadv_2023_100408
crossref_primary_10_1016_j_molmed_2017_09_002
crossref_primary_10_2174_1574888X14666190228103230
crossref_primary_10_1016_j_biotechadv_2018_09_001
crossref_primary_10_1186_s13287_023_03287_7
crossref_primary_10_1155_2020_8835986
crossref_primary_10_1007_s40139_017_0151_9
crossref_primary_10_1089_ten_teb_2019_0252
crossref_primary_10_3389_fneur_2018_00931
crossref_primary_10_3390_ijms23073869
crossref_primary_10_1016_j_bioactmat_2022_07_022
crossref_primary_10_1186_s13287_022_02874_4
crossref_primary_10_1021_acs_nanolett_2c04159
crossref_primary_10_1115_1_4050035
crossref_primary_10_1007_s10735_021_10017_x
crossref_primary_10_3390_pharmaceutics12111022
crossref_primary_10_1002_jor_24212
crossref_primary_10_1089_cell_2017_0047
crossref_primary_10_1186_s12967_020_02622_3
crossref_primary_10_3390_jcm7100357
crossref_primary_10_3389_fmed_2024_1406547
crossref_primary_10_1016_j_bioactmat_2024_02_021
crossref_primary_10_3390_cells9030660
crossref_primary_10_3390_ijms20184597
crossref_primary_10_3892_ijmm_2024_5416
crossref_primary_10_1089_scd_2019_0131
crossref_primary_10_1186_s13287_018_1003_1
crossref_primary_10_1111_codi_15433
crossref_primary_10_1186_s12964_020_00650_6
crossref_primary_10_1007_s00441_018_2792_3
crossref_primary_10_1016_j_yexmp_2021_104608
crossref_primary_10_1007_s13770_022_00489_7
crossref_primary_10_1002_jcsm_13179
crossref_primary_10_1007_s12015_016_9713_1
crossref_primary_10_3390_bioengineering9070318
crossref_primary_10_1111_php_13633
crossref_primary_10_1093_function_zqaa009
crossref_primary_10_1152_japplphysiol_00914_2018
crossref_primary_10_3389_fendo_2021_681267
crossref_primary_10_3390_cancers14143350
crossref_primary_10_1055_a_2159_9128
crossref_primary_10_1161_CIRCRESAHA_118_312420
crossref_primary_10_3390_cells10020273
crossref_primary_10_1134_S2079086419050062
crossref_primary_10_1016_j_jconrel_2022_12_053
crossref_primary_10_3390_jcm8071025
crossref_primary_10_1186_s13287_019_1213_1
crossref_primary_10_2174_1566524022666220511123625
crossref_primary_10_1016_j_bcp_2018_02_004
crossref_primary_10_1186_s13395_024_00355_1
crossref_primary_10_18231_j_ijor_2021_014
crossref_primary_10_1016_j_omtn_2023_07_005
crossref_primary_10_12677_ACM_2023_1371706
crossref_primary_10_3389_fcell_2016_00107
crossref_primary_10_1016_j_bbagen_2018_06_003
crossref_primary_10_2174_1389201021666200907121530
crossref_primary_10_1007_s12035_019_1570_x
crossref_primary_10_1186_s13018_025_05721_3
crossref_primary_10_15252_embr_202050863
crossref_primary_10_1016_j_bioactmat_2024_09_013
crossref_primary_10_2174_1389450119666180521100409
crossref_primary_10_1097_TA_0000000000003218
crossref_primary_10_1111_cpr_12857
crossref_primary_10_1515_revneuro_2017_0059
crossref_primary_10_1007_s00238_021_01874_6
crossref_primary_10_1002_bab_1561
crossref_primary_10_1007_s10616_017_0095_2
crossref_primary_10_1016_j_biomaterials_2019_01_049
crossref_primary_10_15171_apb_2016_041
crossref_primary_10_1007_s00535_024_02152_5
crossref_primary_10_3390_jcm10040711
crossref_primary_10_4103_1673_5374_266048
crossref_primary_10_1016_j_jot_2024_01_001
crossref_primary_10_1021_acs_molpharmaceut_3c00376
crossref_primary_10_1007_s12010_023_04510_0
crossref_primary_10_1186_s13287_017_0478_5
crossref_primary_10_3390_ijms22115929
crossref_primary_10_1155_2020_2187169
crossref_primary_10_3390_ph15050595
crossref_primary_10_3390_ijms23148038
crossref_primary_10_1016_j_pharmthera_2019_04_001
crossref_primary_10_1039_C7NR00352H
crossref_primary_10_1097_JCMA_0000000000000899
crossref_primary_10_3390_cells9040991
crossref_primary_10_1016_j_tem_2016_10_003
crossref_primary_10_1021_acsbiomaterials_1c00217
crossref_primary_10_3390_biomedicines10010069
crossref_primary_10_1089_ten_tea_2023_0057
crossref_primary_10_18632_oncoscience_421
crossref_primary_10_4252_wjsc_v12_i12_1529
crossref_primary_10_1016_j_archoralbio_2019_104596
crossref_primary_10_3390_ijms24020965
crossref_primary_10_1038_s41392_023_01704_0
crossref_primary_10_3390_ijms24032704
crossref_primary_10_1080_15476286_2019_1582956
crossref_primary_10_1134_S1995078020040126
crossref_primary_10_3390_cells8020118
crossref_primary_10_1002_1873_3468_14333
crossref_primary_10_1016_j_exger_2023_112179
crossref_primary_10_1016_j_jisako_2024_04_008
crossref_primary_10_3389_fphys_2016_00024
crossref_primary_10_3389_fimmu_2016_00500
crossref_primary_10_3390_cells11152293
crossref_primary_10_1007_s12094_021_02750_2
crossref_primary_10_1111_nyas_13469
crossref_primary_10_1016_j_gpb_2017_03_006
crossref_primary_10_3389_fcell_2021_653296
crossref_primary_10_1016_j_job_2022_05_002
crossref_primary_10_14814_phy2_15855
crossref_primary_10_1177_0363546519876323
crossref_primary_10_3390_antiox12010044
crossref_primary_10_1016_j_biomaterials_2017_11_023
crossref_primary_10_3390_ijms22063265
crossref_primary_10_1038_s41598_023_45787_9
crossref_primary_10_3390_ijms20020236
crossref_primary_10_1002_cbin_10869
crossref_primary_10_3390_cells9020312
crossref_primary_10_1007_s11010_024_05184_w
crossref_primary_10_1016_j_bbagen_2021_130059
crossref_primary_10_1016_j_bbrc_2016_12_077
crossref_primary_10_3389_fgene_2022_847679
crossref_primary_10_1002_adma_201804041
crossref_primary_10_3390_cells8040307
crossref_primary_10_4252_wjsc_v13_i6_521
crossref_primary_10_1002_adfm_201703853
crossref_primary_10_1016_j_jsxm_2017_07_005
crossref_primary_10_1007_s13273_017_0014_9
crossref_primary_10_1155_2023_4245704
crossref_primary_10_20517_rdodj_2024_16
crossref_primary_10_1016_j_biopha_2020_110442
crossref_primary_10_3390_cells11010043
crossref_primary_10_1155_2021_9919361
crossref_primary_10_1007_s12015_018_9852_7
crossref_primary_10_2217_epi_2019_0192
crossref_primary_10_1038_s41598_017_12885_4
crossref_primary_10_1155_2016_4612167
crossref_primary_10_1016_j_reth_2020_07_007
crossref_primary_10_1007_s13770_022_00446_4
crossref_primary_10_3390_cimb43030104
crossref_primary_10_1038_s41598_017_04559_y
crossref_primary_10_3390_ijms23031662
crossref_primary_10_1016_j_bcp_2021_114714
crossref_primary_10_1016_j_molmed_2017_05_003
crossref_primary_10_3390_ijms17122028
crossref_primary_10_1177_0363546520926462
crossref_primary_10_1002_ctm2_70075
crossref_primary_10_1016_j_biochi_2019_07_009
crossref_primary_10_3389_fimmu_2020_609961
crossref_primary_10_1155_2016_5802529
crossref_primary_10_1186_s13287_019_1398_3
crossref_primary_10_3390_ijms221910542
crossref_primary_10_1039_D1NR01314A
crossref_primary_10_1016_j_biomaterials_2025_123215
crossref_primary_10_3389_fcell_2020_00089
crossref_primary_10_1016_j_mtbio_2020_100067
crossref_primary_10_4252_wjsc_v14_i8_616
crossref_primary_10_1080_08820139_2020_1712416
crossref_primary_10_3389_fphys_2019_01569
crossref_primary_10_1186_s12951_023_01895_2
crossref_primary_10_1089_ten_teb_2018_0027
crossref_primary_10_3389_fbioe_2020_565561
crossref_primary_10_3171_2017_8_JNS1788
crossref_primary_10_1002_term_2947
crossref_primary_10_1186_s13287_015_0150_x
crossref_primary_10_3390_ijms232314632
crossref_primary_10_1177_03635465231207060
crossref_primary_10_1042_BST20180079
crossref_primary_10_5966_sctm_2015_0285
crossref_primary_10_3390_cells9030675
crossref_primary_10_1016_j_archoralbio_2020_104946
crossref_primary_10_1007_s10974_019_09555_5
crossref_primary_10_1155_2018_9415367
crossref_primary_10_1155_2020_7593402
crossref_primary_10_1016_j_ebiom_2018_11_026
crossref_primary_10_1002_jcp_29721
crossref_primary_10_1080_20013078_2020_1807674
crossref_primary_10_1002_jex2_115
crossref_primary_10_3389_fbioe_2021_615920
crossref_primary_10_1186_s41232_021_00163_w
crossref_primary_10_3389_fphys_2017_00275
crossref_primary_10_3390_ijms232416217
crossref_primary_10_1161_CIRCRESAHA_117_311589
crossref_primary_10_1186_s13287_020_01832_2
crossref_primary_10_3390_ijms23137306
crossref_primary_10_1155_2021_9983900
crossref_primary_10_1186_s13287_020_1562_9
crossref_primary_10_1007_s00216_021_03464_8
crossref_primary_10_3390_ijms23084074
crossref_primary_10_1039_C7BM00479F
crossref_primary_10_1016_j_brainres_2019_146619
crossref_primary_10_1016_j_cellsig_2023_110980
crossref_primary_10_1016_j_bbamcr_2018_09_008
crossref_primary_10_1016_j_jddst_2024_105832
Cites_doi 10.1371/journal.pone.0033115
10.1158/0008-5472.CAN-05-0137
10.1089/scd.2012.0395
10.2217/nnm.12.173
10.1038/ncb1596
10.1186/scrt194
10.1161/CIRCULATIONAHA.110.964684
10.1016/j.bbrc.2014.02.007
10.1002/jcb.20886
10.1016/j.scr.2009.12.003
10.1634/stemcells.2007-0637
10.1371/journal.pone.0037512
10.1074/jbc.M110.107821
10.1111/j.1582-4934.2009.00898.x
10.1152/ajpendo.00097.2012
10.1016/j.bbrc.2013.07.084
10.1152/ajpcell.00025.2012
10.1089/ten.2004.10.1093
10.1681/ASN.2008070798
10.1002/stem.1129
10.1073/pnas.0704421104
10.1096/fj.05-5211com
10.1634/stemcells.2008-0034
10.1681/ASN.2005080815
10.1016/S0021-9258(20)80573-0
10.1038/jcbfm.2013.152
ContentType Journal Article
Copyright 2015 Federation of European Biochemical Societies
FEBS Letters 589 (2015) 1873-3468 © 2015 Federation of European Biochemical Societies
Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2015 Federation of European Biochemical Societies
– notice: FEBS Letters 589 (2015) 1873-3468 © 2015 Federation of European Biochemical Societies
– notice: Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.febslet.2015.03.031
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic

CrossRef

AGRICOLA
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
Biology
EISSN 1873-3468
EndPage 1265
ExternalDocumentID 25862500
10_1016_j_febslet_2015_03_031
FEB2S0014579315002094
S0014579315002094
Genre shortCommunication
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
-~X
.~1
0R~
0SF
1B1
1OC
1~.
1~5
24P
2WC
33P
4.4
4G.
53G
5GY
5RE
5VS
6I.
7-5
71M
8P~
AABNK
AACTN
AAEDW
AAESR
AAFTH
AAHHS
AAIKJ
AAJUZ
AALRI
AANLZ
AAQFI
AASGY
AAXRX
AAXUO
AAZKR
ABBQC
ABCUV
ABFNM
ABFRF
ABGSF
ABHUG
ABJNI
ABLJU
ABMAC
ABQWH
ABVKL
ABXGK
ACAHQ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOF
ACIUM
ACMXC
ACNCT
ACPOU
ACXBN
ACXQS
ADAWD
ADBBV
ADBTR
ADDAD
ADEOM
ADEZE
ADKYN
ADMGS
ADOZA
ADQTV
ADUVX
ADXAS
ADZMN
ADZOD
AEEZP
AEFWE
AEGXH
AEKER
AENEX
AEQDE
AEQOU
AEUQT
AEUYR
AEXQZ
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFVGU
AFZJQ
AGJLS
AGYEJ
AHBTC
AIACR
AIAGR
AITUG
AIURR
AIWBW
AJBDE
AJRQY
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AMYDB
AZFZN
AZVAB
BAWUL
BFHJK
BMXJE
C45
CBWCG
CS3
DCZOG
DIK
DOVZS
DRFUL
DRMAN
DRSTM
DU5
E3Z
EBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FNPLU
FUBAC
G-Q
GBLVA
GX1
HVGLF
IHE
IXB
J1W
KBYEO
L7B
LATKE
LCYCR
LEEKS
LITHE
LOXES
LUTES
LX3
LYRES
M41
MEWTI
MO0
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N9A
NCXOZ
O-L
O9-
OK1
OVD
OZT
P-8
P-9
P2P
P2W
PC.
Q38
R9-
RIG
RNS
ROL
RPZ
SCC
SDF
SDG
SDP
SEL
SES
SFE
SSZ
SUPJJ
TEORI
TR2
UHB
UNMZH
WBKPD
WH7
WIH
WIJ
WIK
WIN
WOHZO
WXSBR
YK3
ZA5
ZZTAW
~02
AAHBH
AAHQN
AAIPD
AAMNL
AAYCA
ADVLN
AFWVQ
AITYG
AKRWK
ALUQN
ALVPJ
HGLYW
AAYWO
AAYXX
ACVFH
ADCNI
AEUPX
AEYWJ
AFPUW
AGYGG
AIGII
AKBMS
AKYEP
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
7S9
L.6
ID FETCH-LOGICAL-c6464-a152302f3206f25f17037f69d66e1d15b27feeaa60dc8c8db262c1b6610b3c293
IEDL.DBID .~1
ISSN 0014-5793
IngestDate Fri Jul 11 06:18:29 EDT 2025
Fri Jul 11 10:49:30 EDT 2025
Thu Apr 03 07:06:18 EDT 2025
Tue Jul 01 02:46:41 EDT 2025
Thu Apr 24 23:03:48 EDT 2025
Wed Jan 22 16:24:33 EST 2025
Fri Feb 23 02:33:22 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords Mesenchymal stem cell
Regeneration
MicroRNA
Exosome
Skeletal muscle
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c6464-a152302f3206f25f17037f69d66e1d15b27feeaa60dc8c8db262c1b6610b3c293
Notes Y.N.: the conception and design of the study, acquisition of data, analysis and interpretation of data, manuscript writing; S.M.: the conception and design of the study, acquisition of data, analysis and interpretation of data, manuscript writing; H.I.: acquisition of data, analysis and interpretation of data; S.M.: acquisition of data; T.N.: analysis and interpretation of data; N.K.; analysis and interpretation of data; T.A.: acquisition of data, analysis and interpretation of data; Y.H.: analysis and interpretation of data; M.O.: final approval of the version to be submitted.
Yoshihiro Nakamura and Shigeru Miyaki contributed equally to this work.
Author contributions
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-7181-5739
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0014579315002094
PMID 25862500
PQID 1680176765
PQPubID 23479
PageCount 9
ParticipantIDs proquest_miscellaneous_2000213449
proquest_miscellaneous_1680176765
pubmed_primary_25862500
crossref_citationtrail_10_1016_j_febslet_2015_03_031
crossref_primary_10_1016_j_febslet_2015_03_031
wiley_primary_10_1016_j_febslet_2015_03_031_FEB2S0014579315002094
elsevier_sciencedirect_doi_10_1016_j_febslet_2015_03_031
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 08, 2015
PublicationDateYYYYMMDD 2015-05-08
PublicationDate_xml – month: 05
  year: 2015
  text: May 08, 2015
  day: 08
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle FEBS letters
PublicationTitleAlternate FEBS Lett
PublicationYear 2015
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Zhu (b0100) 2013
Bruno (b0060) 2009; 20
de Vrij (b0110) 2013; 8
Yamamoto, Morino, Nishio, Ugi, Yoshizaki, Kashiwagi, Maegawa (b0145) 2012; 303
Li (b0095) 2013; 22
Gnecchi (b0025) 2006; 20
Bian, Zhang, Duan, Wang, Min, Yu (b0080) 2013
Wang (b0140) 2010; 122
Sabin, Kikyo (b0055) 2013
Natsu, Ochi, Mochizuki, Hachisuka, Yanada, Yasunaga (b0020) 2004; 10
Xin (b0085) 2012; 30
Kunter, Rong, Djuric, Boor, Muller-Newen, Yu, Floege (b0030) 2006; 17
Maier, Ganu, Lotz (b0105) 1993; 268
Kosaka, Iguchi, Yoshioka, Takeshita, Matsuki, Ochiya (b0050) 2010; 285
Shimbo, Miyaki, Ishitobi, Kato, Kubo, Shimose, Ochi (b0130) 2014
Zhou (b0070) 2013; 4
Sassoli (b0115) 2012; 7
Caplan, Dennis (b0010) 2006; 98
Xin, Li, Cui, Yang, Zhang, Chopp (b0090) 2013; 33
Chan, Krichevsky, Kosik (b0125) 2005; 65
Banas (b0035) 2008; 26
Ortiz, Dutreil, Fattman, Pandey, Torres, Go, Phinney (b0040) 2007; 104
Valadi, Ekstrom, Bossios, Sjostrand, Lee, Lotvall (b0045) 2007; 9
Phinney, Prockop (b0005) 2007; 25
Lai (b0075) 2010; 4
Hoene, Runge, Haring, Schleicher, Weigert (b0120) 2013; 304
Nakasa, Ishikawa, Shi, Shibuya, Adachi, Ochi (b0135) 2010; 14
Bruno, Grange, Collino, Deregibus, Cantaluppi, Biancone, Tetta, Camussi (b0065) 2012; 7
Xia, Cao (b0015) 2013; 438
2007; 104
2013; 4
2010; 14
2009; 20
2013; 22
2006; 98
2006; 17
2013; 304
2010; 122
2010; 285
2005; 65
1993; 268
2013; 8
2012; 303
2012; 30
2004; 10
2006; 20
2013; 33
2013; 438
2008; 26
2007; 9
2014
2013
2012; 7
2010; 4
2007; 25
e_1_2_5_27_1
e_1_2_5_28_1
e_1_2_5_25_1
e_1_2_5_26_1
e_1_2_5_23_1
e_1_2_5_24_1
e_1_2_5_22_1
e_1_2_5_29_1
e_1_2_5_20_1
Bian S. (e_1_2_5_17_1) 2013
Sabin K. (e_1_2_5_12_1) 2013
e_1_2_5_15_1
e_1_2_5_14_1
e_1_2_5_9_1
e_1_2_5_16_1
e_1_2_5_8_1
e_1_2_5_11_1
e_1_2_5_7_1
e_1_2_5_10_1
e_1_2_5_6_1
e_1_2_5_13_1
e_1_2_5_5_1
e_1_2_5_4_1
e_1_2_5_3_1
e_1_2_5_2_1
e_1_2_5_19_1
e_1_2_5_18_1
Zhu Y.G. (e_1_2_5_21_1) 2013
e_1_2_5_30_1
References_xml – volume: 7
  start-page: e33115
  year: 2012
  ident: b0065
  article-title: Microvesicles derived from mesenchymal stem cells enhance survival in a lethal model of acute kidney injury
  publication-title: PLoS One
– volume: 285
  start-page: 17442
  year: 2010
  end-page: 17452
  ident: b0050
  article-title: Secretory mechanisms and intercellular transfer of microRNAs in living cells
  publication-title: J. Biol. Chem.
– volume: 22
  start-page: 845
  year: 2013
  end-page: 854
  ident: b0095
  article-title: Exosomes derived from human umbilical cord mesenchymal stem cells alleviate liver fibrosis
  publication-title: Stem Cells Dev.
– volume: 14
  start-page: 2495
  year: 2010
  end-page: 2505
  ident: b0135
  article-title: Acceleration of muscle regeneration by local injection of muscle-specific microRNAs in rat skeletal muscle injury model
  publication-title: J. Cell Mol. Med.
– volume: 4
  start-page: 214
  year: 2010
  end-page: 222
  ident: b0075
  article-title: Exosome secreted by MSC reduces myocardial ischemia/reperfusion injury
  publication-title: Stem Cell Res.
– volume: 30
  start-page: 1556
  year: 2012
  end-page: 1564
  ident: b0085
  article-title: Exosome-mediated transfer of miR-133b from multipotent mesenchymal stromal cells to neural cells contributes to neurite outgrowth
  publication-title: Stem Cells
– volume: 9
  start-page: 654
  year: 2007
  end-page: 659
  ident: b0045
  article-title: Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells
  publication-title: Nat. Cell Biol.
– volume: 20
  start-page: 661
  year: 2006
  end-page: 669
  ident: b0025
  article-title: Evidence supporting paracrine hypothesis for Akt-modified mesenchymal stem cell-mediated cardiac protection and functional improvement
  publication-title: FASEB J.
– volume: 17
  start-page: 2202
  year: 2006
  end-page: 2212
  ident: b0030
  article-title: Transplanted mesenchymal stem cells accelerate glomerular healing in experimental glomerulonephritis
  publication-title: J. Am. Soc. Nephrol.
– volume: 20
  start-page: 1053
  year: 2009
  end-page: 1067
  ident: b0060
  article-title: Mesenchymal stem cell-derived microvesicles protect against acute tubular injury
  publication-title: J. Am. Soc. Nephrol.
– year: 2013
  ident: b0100
  article-title: Human mesenchymal stem cell microvesicles for treatment of
  publication-title: Stem Cells
– volume: 65
  start-page: 6029
  year: 2005
  end-page: 6033
  ident: b0125
  article-title: MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells
  publication-title: Cancer Res.
– year: 2014
  ident: b0130
  article-title: Exosome-formed synthetic microRNA-143 is transferred to osteosarcoma cells and inhibits their migration
  publication-title: Biochem. Biophys. Res. Commun.
– year: 2013
  ident: b0055
  article-title: Microvesicles as mediators of tissue regeneration
  publication-title: Transl. Res.
– volume: 268
  start-page: 21527
  year: 1993
  end-page: 21532
  ident: b0105
  article-title: Interleukin-11, an inducible cytokine in human articular chondrocytes and synoviocytes, stimulates the production of the tissue inhibitor of metalloproteinases
  publication-title: J. Biol. Chem.
– year: 2013
  ident: b0080
  article-title: Extracellular vesicles derived from human bone marrow mesenchymal stem cells promote angiogenesis in a rat myocardial infarction model
  publication-title: J. Mol. Med. (Berl.)
– volume: 122
  start-page: 1308
  year: 2010
  end-page: 1318
  ident: b0140
  article-title: MicroRNA-494 targeting both proapoptotic and antiapoptotic proteins protects against ischemia/reperfusion-induced cardiac injury
  publication-title: Circulation
– volume: 98
  start-page: 1076
  year: 2006
  end-page: 1084
  ident: b0010
  article-title: Mesenchymal stem cells as trophic mediators
  publication-title: J. Cell. Biochem.
– volume: 7
  start-page: e37512
  year: 2012
  ident: b0115
  article-title: Bone marrow mesenchymal stromal cells stimulate skeletal myoblast proliferation through the paracrine release of VEGF
  publication-title: PLoS One
– volume: 438
  start-page: 382
  year: 2013
  end-page: 387
  ident: b0015
  article-title: Imaging the survival and utility of pre-differentiated allogeneic MSC in ischemic heart
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 26
  start-page: 2705
  year: 2008
  end-page: 2712
  ident: b0035
  article-title: IFATS collection: in vivo therapeutic potential of human adipose tissue mesenchymal stem cells after transplantation into mice with liver injury
  publication-title: Stem Cells
– volume: 25
  start-page: 2896
  year: 2007
  end-page: 2902
  ident: b0005
  article-title: Concise review: mesenchymal stem/multipotent stromal cells: the state of transdifferentiation and modes of tissue repair–current views
  publication-title: Stem Cells
– volume: 4
  start-page: 34
  year: 2013
  ident: b0070
  article-title: Exosomes released by human umbilical cord mesenchymal stem cells protect against cisplatin-induced renal oxidative stress and apoptosis in vivo and in vitro
  publication-title: Stem Cell Res. Ther.
– volume: 303
  start-page: E1419
  year: 2012
  end-page: 27
  ident: b0145
  article-title: MicroRNA-494 regulates mitochondrial biogenesis in skeletal muscle through mitochondrial transcription factor A and Forkhead box j3
  publication-title: Am. J. Physiol. Endocrinol. Metab.
– volume: 304
  start-page: C128
  year: 2013
  end-page: C136
  ident: b0120
  article-title: Interleukin-6 promotes myogenic differentiation of mouse skeletal muscle cells: role of the STAT3 pathway
  publication-title: Am. J. Physiol. Cell Physiol.
– volume: 10
  start-page: 1093
  year: 2004
  end-page: 1112
  ident: b0020
  article-title: Allogeneic bone marrow-derived mesenchymal stromal cells promote the regeneration of injured skeletal muscle without differentiation into myofibers
  publication-title: Tissue Eng.
– volume: 104
  start-page: 11002
  year: 2007
  end-page: 11007
  ident: b0040
  article-title: Interleukin 1 receptor antagonist mediates the antiinflammatory and antifibrotic effect of mesenchymal stem cells during lung injury
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– volume: 8
  start-page: 1443
  year: 2013
  end-page: 1458
  ident: b0110
  article-title: Quantification of nanosized extracellular membrane vesicles with scanning ion occlusion sensing
  publication-title: Nanomedicine (Lond.)
– volume: 33
  start-page: 1711
  year: 2013
  end-page: 1715
  ident: b0090
  article-title: Systemic administration of exosomes released from mesenchymal stromal cells promote functional recovery and neurovascular plasticity after stroke in rats
  publication-title: J. Cereb. Blood Flow Metab.
– volume: 304
  start-page: C128
  year: 2013
  end-page: C136
  article-title: Interleukin-6 promotes myogenic differentiation of mouse skeletal muscle cells: role of the STAT3 pathway
  publication-title: Am. J. Physiol. Cell Physiol.
– volume: 8
  start-page: 1443
  year: 2013
  end-page: 1458
  article-title: Quantification of nanosized extracellular membrane vesicles with scanning ion occlusion sensing
  publication-title: Nanomedicine (Lond.)
– volume: 25
  start-page: 2896
  year: 2007
  end-page: 2902
  article-title: Concise review: mesenchymal stem/multipotent stromal cells: the state of transdifferentiation and modes of tissue repair–current views
  publication-title: Stem Cells
– volume: 7
  start-page: e37512
  year: 2012
  article-title: Bone marrow mesenchymal stromal cells stimulate skeletal myoblast proliferation through the paracrine release of VEGF
  publication-title: PLoS One
– volume: 4
  start-page: 34
  year: 2013
  article-title: Exosomes released by human umbilical cord mesenchymal stem cells protect against cisplatin-induced renal oxidative stress and apoptosis in vivo and in vitro
  publication-title: Stem Cell Res. Ther.
– volume: 438
  start-page: 382
  year: 2013
  end-page: 387
  article-title: Imaging the survival and utility of pre-differentiated allogeneic MSC in ischemic heart
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 26
  start-page: 2705
  year: 2008
  end-page: 2712
  article-title: IFATS collection: in vivo therapeutic potential of human adipose tissue mesenchymal stem cells after transplantation into mice with liver injury
  publication-title: Stem Cells
– year: 2013
  article-title: Microvesicles as mediators of tissue regeneration
  publication-title: Transl. Res.
– volume: 9
  start-page: 654
  year: 2007
  end-page: 659
  article-title: Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells
  publication-title: Nat. Cell Biol.
– volume: 98
  start-page: 1076
  year: 2006
  end-page: 1084
  article-title: Mesenchymal stem cells as trophic mediators
  publication-title: J. Cell. Biochem.
– year: 2013
  article-title: Extracellular vesicles derived from human bone marrow mesenchymal stem cells promote angiogenesis in a rat myocardial infarction model
  publication-title: J. Mol. Med. (Berl.)
– volume: 14
  start-page: 2495
  year: 2010
  end-page: 2505
  article-title: Acceleration of muscle regeneration by local injection of muscle-specific microRNAs in rat skeletal muscle injury model
  publication-title: J. Cell Mol. Med.
– volume: 285
  start-page: 17442
  year: 2010
  end-page: 17452
  article-title: Secretory mechanisms and intercellular transfer of microRNAs in living cells
  publication-title: J. Biol. Chem.
– volume: 65
  start-page: 6029
  year: 2005
  end-page: 6033
  article-title: MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells
  publication-title: Cancer Res.
– volume: 30
  start-page: 1556
  year: 2012
  end-page: 1564
  article-title: Exosome-mediated transfer of miR-133b from multipotent mesenchymal stromal cells to neural cells contributes to neurite outgrowth
  publication-title: Stem Cells
– volume: 4
  start-page: 214
  year: 2010
  end-page: 222
  article-title: Exosome secreted by MSC reduces myocardial ischemia/reperfusion injury
  publication-title: Stem Cell Res.
– year: 2013
  article-title: Human mesenchymal stem cell microvesicles for treatment of endotoxin-induced acute lung injury in mice
  publication-title: Stem Cells
– volume: 122
  start-page: 1308
  year: 2010
  end-page: 1318
  article-title: MicroRNA-494 targeting both proapoptotic and antiapoptotic proteins protects against ischemia/reperfusion-induced cardiac injury
  publication-title: Circulation
– volume: 303
  start-page: E1419
  year: 2012
  end-page: 27
  article-title: MicroRNA-494 regulates mitochondrial biogenesis in skeletal muscle through mitochondrial transcription factor A and Forkhead box j3
  publication-title: Am. J. Physiol. Endocrinol. Metab.
– volume: 10
  start-page: 1093
  year: 2004
  end-page: 1112
  article-title: Allogeneic bone marrow-derived mesenchymal stromal cells promote the regeneration of injured skeletal muscle without differentiation into myofibers
  publication-title: Tissue Eng.
– year: 2014
  article-title: Exosome-formed synthetic microRNA-143 is transferred to osteosarcoma cells and inhibits their migration
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 104
  start-page: 11002
  year: 2007
  end-page: 11007
  article-title: Interleukin 1 receptor antagonist mediates the antiinflammatory and antifibrotic effect of mesenchymal stem cells during lung injury
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– volume: 7
  start-page: e33115
  year: 2012
  article-title: Microvesicles derived from mesenchymal stem cells enhance survival in a lethal model of acute kidney injury
  publication-title: PLoS One
– volume: 268
  start-page: 21527
  year: 1993
  end-page: 21532
  article-title: Interleukin-11, an inducible cytokine in human articular chondrocytes and synoviocytes, stimulates the production of the tissue inhibitor of metalloproteinases
  publication-title: J. Biol. Chem.
– volume: 33
  start-page: 1711
  year: 2013
  end-page: 1715
  article-title: Systemic administration of exosomes released from mesenchymal stromal cells promote functional recovery and neurovascular plasticity after stroke in rats
  publication-title: J. Cereb. Blood Flow Metab.
– volume: 22
  start-page: 845
  year: 2013
  end-page: 854
  article-title: Exosomes derived from human umbilical cord mesenchymal stem cells alleviate liver fibrosis
  publication-title: Stem Cells Dev.
– volume: 20
  start-page: 661
  year: 2006
  end-page: 669
  article-title: Evidence supporting paracrine hypothesis for Akt-modified mesenchymal stem cell-mediated cardiac protection and functional improvement
  publication-title: FASEB J.
– volume: 20
  start-page: 1053
  year: 2009
  end-page: 1067
  article-title: Mesenchymal stem cell-derived microvesicles protect against acute tubular injury
  publication-title: J. Am. Soc. Nephrol.
– volume: 17
  start-page: 2202
  year: 2006
  end-page: 2212
  article-title: Transplanted mesenchymal stem cells accelerate glomerular healing in experimental glomerulonephritis
  publication-title: J. Am. Soc. Nephrol.
– year: 2013
  ident: e_1_2_5_12_1
  article-title: Microvesicles as mediators of tissue regeneration
  publication-title: Transl. Res.
– ident: e_1_2_5_14_1
  doi: 10.1371/journal.pone.0033115
– ident: e_1_2_5_26_1
  doi: 10.1158/0008-5472.CAN-05-0137
– ident: e_1_2_5_20_1
  doi: 10.1089/scd.2012.0395
– ident: e_1_2_5_23_1
  doi: 10.2217/nnm.12.173
– ident: e_1_2_5_10_1
  doi: 10.1038/ncb1596
– year: 2013
  ident: e_1_2_5_17_1
  article-title: Extracellular vesicles derived from human bone marrow mesenchymal stem cells promote angiogenesis in a rat myocardial infarction model
  publication-title: J. Mol. Med. (Berl.)
– ident: e_1_2_5_15_1
  doi: 10.1186/scrt194
– ident: e_1_2_5_29_1
  doi: 10.1161/CIRCULATIONAHA.110.964684
– ident: e_1_2_5_27_1
  doi: 10.1016/j.bbrc.2014.02.007
– ident: e_1_2_5_3_1
  doi: 10.1002/jcb.20886
– ident: e_1_2_5_16_1
  doi: 10.1016/j.scr.2009.12.003
– ident: e_1_2_5_2_1
  doi: 10.1634/stemcells.2007-0637
– ident: e_1_2_5_24_1
  doi: 10.1371/journal.pone.0037512
– ident: e_1_2_5_11_1
  doi: 10.1074/jbc.M110.107821
– ident: e_1_2_5_28_1
  doi: 10.1111/j.1582-4934.2009.00898.x
– year: 2013
  ident: e_1_2_5_21_1
  article-title: Human mesenchymal stem cell microvesicles for treatment of E. coli endotoxin-induced acute lung injury in mice
  publication-title: Stem Cells
– ident: e_1_2_5_30_1
  doi: 10.1152/ajpendo.00097.2012
– ident: e_1_2_5_4_1
  doi: 10.1016/j.bbrc.2013.07.084
– ident: e_1_2_5_25_1
  doi: 10.1152/ajpcell.00025.2012
– ident: e_1_2_5_5_1
  doi: 10.1089/ten.2004.10.1093
– ident: e_1_2_5_13_1
  doi: 10.1681/ASN.2008070798
– ident: e_1_2_5_18_1
  doi: 10.1002/stem.1129
– ident: e_1_2_5_9_1
  doi: 10.1073/pnas.0704421104
– ident: e_1_2_5_6_1
  doi: 10.1096/fj.05-5211com
– ident: e_1_2_5_8_1
  doi: 10.1634/stemcells.2008-0034
– ident: e_1_2_5_7_1
  doi: 10.1681/ASN.2005080815
– ident: e_1_2_5_22_1
  doi: 10.1016/S0021-9258(20)80573-0
– ident: e_1_2_5_19_1
  doi: 10.1038/jcbfm.2013.152
SSID ssj0001819
Score 2.6214528
Snippet •Mesenchymal stem cell exosomes promoted myogenesis and angiogenesis in vitro.•Mesenchymal stem cell exosomes accelerated muscle regeneration in a mouse injury...
Mesenchymal stem cell (MSC) transplantation is used for treatment of many diseases. The paracrine role of MSCs in tissue regeneration is attracting particular...
SourceID proquest
pubmed
crossref
wiley
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1257
SubjectTerms angiogenesis
Animals
Cell Line
cytokines
Exosome
Exosomes
Humans
Mesenchymal stem cell
Mesenchymal Stromal Cells - cytology
Mesenchymal Stromal Cells - metabolism
Mice
MicroRNA
MicroRNAs - biosynthesis
Muscle Development
Muscle, Skeletal - cytology
Muscle, Skeletal - physiology
muscles
Myoblasts, Skeletal - cytology
Myoblasts, Skeletal - metabolism
Regeneration
Regeneration - physiology
Skeletal muscle
stem cells
tissue repair
Title Mesenchymal-stem-cell-derived exosomes accelerate skeletal muscle regeneration
URI https://dx.doi.org/10.1016/j.febslet.2015.03.031
https://onlinelibrary.wiley.com/doi/abs/10.1016%2Fj.febslet.2015.03.031
https://www.ncbi.nlm.nih.gov/pubmed/25862500
https://www.proquest.com/docview/1680176765
https://www.proquest.com/docview/2000213449
Volume 589
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYhpbSX0iZ9bB9BhdKbdi1Zku3j7pIlD5pDaejehJ5N0qw3xNnSXPrbO5LthBBCQsAHSUhY0nzSfBIzI4S-UJsLWVBHtGGCcMMNMZWWRLo8uEpqqXWy8j2QO4d8by7ma2ja-8JEs8pu72_39LRbdyWjbjZHZ8fH0ceXcgHwAkoDnKeKMUE5LyLKh_-uzTxAg7UUmHISa1978YxOhsGbBqYnWniJFOs0p3fpp9v88yadTfpo9hK96IgkHrd9fYXWfL2BNsc1HKIXl_grTqad6c58Az2d9Kln0_6Bt0108C16Htmjy4U-JTGeM4m3-MQBJv94h_3fZbNc-AZrC-Ux9rLHzW9IAV3Hi1UDf8Xn_lcKWx2l-xodzrZ_THdI97wCsZJLTjSNN8Is5CyTgYlAYfEXQVZOSk8dFYYVwXutZeZsaUtnmGSWGlDomckt0IQ3aL1e1v4dwrmGYwq1JffOcseysvK5s96GILguHBsg3k-qsl3s8fgExqnqjcxOVCcLFWWhshw-OkDDq2ZnbfCN-xqUvcTUDRQpUBD3Nf3cS1iBHOKE69ovV42iErR4IQsp7q4THZ5ibDxeDdDbFh5XPWYCTo2A0QEaJ7w8bChqtj1htzD-_vED_ICex1wy1iw_ovWL85X_BITqwmylFbOFnoz3v__ch9zufPIfHX0d4g
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5Rqopeqhb62D5TqerNu7FjO8lxWbHatrAnkLhZfqWFsllEWASX_vaOnQSEEKKqlIPlh2LPjD2frXkAfKE2EzKnjmjDBOGGG2JKLYl0WeVKqaXW0cp3LmcH_PuhOFyDSe8LE8wqu7O_PdPjad3VjDpqjk6PjoKPL-UCxQshDWKekj-Cxxy3b0hjMPxzY-eBKqzFwJST0P3GjWd0PKy8aZA-wcRLxGCnGb1PQd0FoLfxbFRI0-fwrEOSybid7AtY8_UmbI1rvEUvrpKvSbTtjI_mm_Bkuy9tTPoMb1sw3wuuR_bX1UKfkBDQmYRnfOJQKC-8S_zlslkufJNoi_Uh-LJPmt9YQryeLFYN_jU58z9j3OrA3pdwMN3Zn8xIl1-BWMklJ5qGJ2FWZSyVFRMVxd2fV7J0UnrqqDAsr7zXWqbOFrZwhklmqUGNnprMIk54Bev1svZvIMk03lOoLbh3ljuWFqXPnPW2qgTXuWMD4D1Rle2Cj4ccGCeqtzI7Vh0vVOCFSjP86ACG18NO2-gbDw0oeo6pW2KkUEM8NPRzz2GFfAgE17VfrhpFJarxXOZS3N8neDyF4Hi8HMDrVjyuZ8wEXhtRSAcwjvLyb0tR051tdkfI3_7_Aj_Bxmx_b1ftfpv_eAdPQ0u03Czew_r52cp_QHR1bj7G3fMXvZEeVw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mesenchymal-stem-cell-derived+exosomes+accelerate+skeletal+muscle+regeneration&rft.jtitle=FEBS+letters&rft.au=Nakamura%2C+Yoshihiro&rft.au=Miyaki%2C+Shigeru&rft.au=Ishitobi%2C+Hiroyuki&rft.au=Matsuyama%2C+Sho&rft.date=2015-05-08&rft.eissn=1873-3468&rft.volume=589&rft.issue=11&rft.spage=1257&rft_id=info:doi/10.1016%2Fj.febslet.2015.03.031&rft_id=info%3Apmid%2F25862500&rft.externalDocID=25862500
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0014-5793&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0014-5793&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0014-5793&client=summon