Mesenchymal-stem-cell-derived exosomes accelerate skeletal muscle regeneration
•Mesenchymal stem cell exosomes promoted myogenesis and angiogenesis in vitro.•Mesenchymal stem cell exosomes accelerated muscle regeneration in a mouse injury model.•Mesenchymal stem cell exosomes had low concentrations of repair-related cytokines.•Many repair-related microRNAs were identified in m...
Saved in:
Published in | FEBS letters Vol. 589; no. 11; pp. 1257 - 1265 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier B.V
08.05.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Mesenchymal stem cell exosomes promoted myogenesis and angiogenesis in vitro.•Mesenchymal stem cell exosomes accelerated muscle regeneration in a mouse injury model.•Mesenchymal stem cell exosomes had low concentrations of repair-related cytokines.•Many repair-related microRNAs were identified in mesenchymal stem cell exosomes.•MicroRNA-494 in mesenchymal stem cell exosomes enhanced myogenesis and angiogenesis.
Mesenchymal stem cell (MSC) transplantation is used for treatment of many diseases. The paracrine role of MSCs in tissue regeneration is attracting particular attention. We investigate the role of MSC exosomes in skeletal muscle regeneration. MSC exosomes promote myogenesis and angiogenesis in vitro, and muscle regeneration in an in vivo model of muscle injury. Although MSC exosomes had low concentrations of muscle-repair-related cytokines, a number of repair-related miRNAs were identified. This study suggests that the MSC-derived exosomes promote muscle regeneration by enhancing myogenesis and angiogenesis, which is at least in part mediated by miRNAs such as miR-494. |
---|---|
AbstractList | Mesenchymal stem cell (MSC) transplantation is used for treatment of many diseases. The paracrine role of MSCs in tissue regeneration is attracting particular attention. We investigate the role of MSC exosomes in skeletal muscle regeneration. MSC exosomes promote myogenesis and angiogenesis in vitro, and muscle regeneration in an in vivo model of muscle injury. Although MSC exosomes had low concentrations of muscle-repair-related cytokines, a number of repair-related miRNAs were identified. This study suggests that the MSC-derived exosomes promote muscle regeneration by enhancing myogenesis and angiogenesis, which is at least in part mediated by miRNAs such as miR-494. •Mesenchymal stem cell exosomes promoted myogenesis and angiogenesis in vitro.•Mesenchymal stem cell exosomes accelerated muscle regeneration in a mouse injury model.•Mesenchymal stem cell exosomes had low concentrations of repair-related cytokines.•Many repair-related microRNAs were identified in mesenchymal stem cell exosomes.•MicroRNA-494 in mesenchymal stem cell exosomes enhanced myogenesis and angiogenesis. Mesenchymal stem cell (MSC) transplantation is used for treatment of many diseases. The paracrine role of MSCs in tissue regeneration is attracting particular attention. We investigate the role of MSC exosomes in skeletal muscle regeneration. MSC exosomes promote myogenesis and angiogenesis in vitro, and muscle regeneration in an in vivo model of muscle injury. Although MSC exosomes had low concentrations of muscle-repair-related cytokines, a number of repair-related miRNAs were identified. This study suggests that the MSC-derived exosomes promote muscle regeneration by enhancing myogenesis and angiogenesis, which is at least in part mediated by miRNAs such as miR-494. Mesenchymal stem cell (MSC) transplantation is used for treatment of many diseases. The paracrine role of MSCs in tissue regeneration is attracting particular attention. We investigate the role of MSC exosomes in skeletal muscle regeneration. MSC exosomes promote myogenesis and angiogenesis in vitro, and muscle regeneration in an in vivo model of muscle injury. Although MSC exosomes had low concentrations of muscle‐repair‐related cytokines, a number of repair‐related miRNAs were identified. This study suggests that the MSC‐derived exosomes promote muscle regeneration by enhancing myogenesis and angiogenesis, which is at least in part mediated by miRNAs such as miR‐494. Mesenchymal stem cell exosomes promoted myogenesis and angiogenesis in vitro. Mesenchymal stem cell exosomes accelerated muscle regeneration in a mouse injury model. Mesenchymal stem cell exosomes had low concentrations of repair‐related cytokines. Many repair‐related microRNAs were identified in mesenchymal stem cell exosomes. MicroRNA‐494 in mesenchymal stem cell exosomes enhanced myogenesis and angiogenesis. |
Author | Matsuyama, Sho Nakamura, Yoshihiro Miyaki, Shigeru Ochi, Mitsuo Nakasa, Tomoyuki Kamei, Naosuke Akimoto, Takayuki Ishitobi, Hiroyuki Higashi, Yukihito |
Author_xml | – sequence: 1 givenname: Yoshihiro orcidid: 0000-0002-7181-5739 surname: Nakamura fullname: Nakamura, Yoshihiro email: nakamurayoshihiro0419@gmail.com organization: Department of Orthopedic Surgery, Hiroshima University, Hiroshima, Japan – sequence: 2 givenname: Shigeru surname: Miyaki fullname: Miyaki, Shigeru organization: Department of Orthopedic Surgery, Hiroshima University, Hiroshima, Japan – sequence: 3 givenname: Hiroyuki surname: Ishitobi fullname: Ishitobi, Hiroyuki organization: Department of Regenerative Medicine, Hiroshima University Hospital, Hiroshima, Japan – sequence: 4 givenname: Sho surname: Matsuyama fullname: Matsuyama, Sho organization: Department of Orthopedic Surgery, Hiroshima University, Hiroshima, Japan – sequence: 5 givenname: Tomoyuki surname: Nakasa fullname: Nakasa, Tomoyuki organization: Department of Orthopedic Surgery, Hiroshima University, Hiroshima, Japan – sequence: 6 givenname: Naosuke surname: Kamei fullname: Kamei, Naosuke organization: Department of Orthopedic Surgery, Hiroshima University, Hiroshima, Japan – sequence: 7 givenname: Takayuki surname: Akimoto fullname: Akimoto, Takayuki organization: Division of Regenerative Medical Engineering, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, University of Tokyo, Tokyo, Japan – sequence: 8 givenname: Yukihito surname: Higashi fullname: Higashi, Yukihito organization: Department of Regenerative Medicine, Hiroshima University Hospital, Hiroshima, Japan – sequence: 9 givenname: Mitsuo surname: Ochi fullname: Ochi, Mitsuo organization: Department of Orthopedic Surgery, Hiroshima University, Hiroshima, Japan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25862500$$D View this record in MEDLINE/PubMed |
BookMark | eNqNUk1v1DAUtFAR3RZ-AihHLlnes2MnEQdEq5YiFTgAZ8uxX8CLkxQ7W9h_j8NuL1wW6Un-mhnP8_iMnYzTSIw9R1gjoHq1WffUpUDzmgPKNYhc-IitsKlFKSrVnLAVAFalrFtxys5S2kBeN9g-YadcNopLgBX7-IESjfb7bjChTDMNpaUQSkfR35Mr6PeUpoFSYWzep2hmKtKPPJtNKIZtsoGKSN9oXI78ND5lj3sTEj07jOfs6_XVl8ub8vbTu_eXb29LqypVlQYlF8B7wUH1XPZYg6h71TqlCB3Kjtc9kTEKnG1s4zquuMVOKYROWN6Kc_Zyr3sXp59bSrMefFqcm5GmbdI898pRVNVxKKoGsFa1khn64gDddgM5fRf9YOJOPzxXBrzeA2ycUorUa-vnv43P0figEfQSjt7oQzh6CUeDyIWZLf9hP1xwjHez5_3ygXb_R9LXVxf88_IBlvwxm-fQVlnqzV6Kcjj3nqJO1uf8yflIdtZu8kfM_AEfLcDx |
CitedBy_id | crossref_primary_10_1021_acsbiomaterials_9b00607 crossref_primary_10_1007_s11914_019_00537_7 crossref_primary_10_3389_fgene_2022_915141 crossref_primary_10_12677_OJNS_2017_51004 crossref_primary_10_1016_j_semcdb_2022_05_027 crossref_primary_10_1016_j_jcyt_2018_11_012 crossref_primary_10_3390_cells11203222 crossref_primary_10_3390_ijms20030683 crossref_primary_10_1002_adfm_201909125 crossref_primary_10_2217_rme_2022_0141 crossref_primary_10_3389_fphys_2019_00828 crossref_primary_10_3389_fbioe_2020_615520 crossref_primary_10_3389_fcell_2021_661532 crossref_primary_10_47184_tev_2019_01_05 crossref_primary_10_1007_s12265_021_10200_1 crossref_primary_10_3390_biology10030172 crossref_primary_10_3390_ma14051078 crossref_primary_10_1007_s12011_020_02183_y crossref_primary_10_3390_ijms25115916 crossref_primary_10_1016_j_biomaterials_2018_04_055 crossref_primary_10_1016_j_pharmthera_2016_10_005 crossref_primary_10_1002_advs_202207050 crossref_primary_10_1111_cpr_12359 crossref_primary_10_1016_j_ijcard_2018_04_028 crossref_primary_10_1089_cell_2019_0077 crossref_primary_10_3390_ijms252010877 crossref_primary_10_1002_cbin_11313 crossref_primary_10_3390_biom11081171 crossref_primary_10_1007_s13770_020_00324_x crossref_primary_10_1016_j_ncrna_2017_03_003 crossref_primary_10_3390_ijms25115811 crossref_primary_10_1111_cpr_12233 crossref_primary_10_3390_ijms24097833 crossref_primary_10_1002_stem_2575 crossref_primary_10_1248_bpb_b20_00536 crossref_primary_10_1016_j_isci_2024_110784 crossref_primary_10_3389_fendo_2019_00846 crossref_primary_10_1007_s12015_016_9643_y crossref_primary_10_3390_cells10082086 crossref_primary_10_3390_ijms22126182 crossref_primary_10_5005_jp_journals_10028_1279 crossref_primary_10_1089_ars_2019_7965 crossref_primary_10_1371_journal_pone_0284989 crossref_primary_10_1155_2021_9962194 crossref_primary_10_1007_s12576_017_0576_2 crossref_primary_10_1016_j_biocel_2017_01_016 crossref_primary_10_1016_j_msec_2018_04_006 crossref_primary_10_3390_pharmaceutics14040733 crossref_primary_10_1016_j_isci_2024_110307 crossref_primary_10_1155_2018_3530647 crossref_primary_10_4103_1673_5374_295269 crossref_primary_10_3390_ijms23169274 crossref_primary_10_18632_aging_101425 crossref_primary_10_1111_voxs_12212 crossref_primary_10_1186_s13287_020_01908_z crossref_primary_10_1038_s41598_021_94365_4 crossref_primary_10_1038_s41598_017_01809_x crossref_primary_10_37321_ujmh_2024_1_2_02 crossref_primary_10_3390_ijms20051108 crossref_primary_10_7603_s40730_016_0047_z crossref_primary_10_1186_s13036_022_00301_z crossref_primary_10_3389_fendo_2017_00336 crossref_primary_10_3390_ijms232314913 crossref_primary_10_1186_s13287_021_02594_1 crossref_primary_10_3389_fonc_2023_994340 crossref_primary_10_1111_odi_14153 crossref_primary_10_3389_fbioe_2023_1162263 crossref_primary_10_3390_cimb46060358 crossref_primary_10_1007_s11427_021_1997_2 crossref_primary_10_1016_j_bcp_2022_114954 crossref_primary_10_1016_j_trsl_2018_01_005 crossref_primary_10_1021_acs_nanolett_8b01816 crossref_primary_10_1155_2018_7231739 crossref_primary_10_3390_biom14030330 crossref_primary_10_3402_jev_v4_30087 crossref_primary_10_1002_sctm_18_0297 crossref_primary_10_1186_s13287_022_02723_4 crossref_primary_10_1155_2020_4176926 crossref_primary_10_1186_s12986_021_00565_0 crossref_primary_10_2460_javma_22_02_0060 crossref_primary_10_1186_s12967_024_05201_y crossref_primary_10_1186_s13287_016_0391_3 crossref_primary_10_1016_j_jcyt_2022_11_010 crossref_primary_10_1186_s13287_019_1186_0 crossref_primary_10_1111_jcmm_14615 crossref_primary_10_1111_jcmm_15946 crossref_primary_10_1186_s13287_017_0648_5 crossref_primary_10_3389_fcell_2021_716853 crossref_primary_10_1016_j_acthis_2018_04_003 crossref_primary_10_15283_ijsc20167 crossref_primary_10_3390_ijms21186768 crossref_primary_10_1210_jc_2018_02547 crossref_primary_10_1002_1873_3468_12024 crossref_primary_10_12688_f1000research_21333_1 crossref_primary_10_3390_ijms22105346 crossref_primary_10_1016_j_jsb_2020_107474 crossref_primary_10_1002_jor_25143 crossref_primary_10_3389_fcell_2017_00006 crossref_primary_10_1016_j_sdentj_2022_04_006 crossref_primary_10_1002_btpr_3243 crossref_primary_10_15789_2220_7619_NPF_1940 crossref_primary_10_3892_br_2016_725 crossref_primary_10_3390_cells9010098 crossref_primary_10_1007_s00383_024_05812_y crossref_primary_10_1016_j_bioactmat_2021_10_021 crossref_primary_10_1186_s13287_020_01872_8 crossref_primary_10_3389_fbioe_2019_00292 crossref_primary_10_1007_s10396_024_01429_9 crossref_primary_10_3390_ijms232415942 crossref_primary_10_1016_j_jconrel_2022_06_026 crossref_primary_10_3389_fbioe_2021_652970 crossref_primary_10_1016_j_biopha_2024_117665 crossref_primary_10_1038_s41467_023_40680_5 crossref_primary_10_1097_SHK_0000000000001002 crossref_primary_10_1002_sctm_16_0297 crossref_primary_10_1016_j_diff_2019_10_003 crossref_primary_10_1016_j_lfs_2019_01_052 crossref_primary_10_1155_2019_1983131 crossref_primary_10_1186_s40580_023_00398_y crossref_primary_10_3389_fbioe_2022_1054370 crossref_primary_10_3389_fphar_2016_00231 crossref_primary_10_1097_BOR_0000000000000454 crossref_primary_10_1007_s10616_024_00675_6 crossref_primary_10_1016_j_reth_2020_11_002 crossref_primary_10_1155_2021_7232773 crossref_primary_10_1097_TA_0000000000002225 crossref_primary_10_1016_j_ymthe_2020_10_026 crossref_primary_10_14336_AD_2024_0280 crossref_primary_10_1016_j_ymthe_2016_11_019 crossref_primary_10_1177_2041731418810130 crossref_primary_10_1155_2020_5816723 crossref_primary_10_1016_j_jconrel_2018_01_022 crossref_primary_10_3390_ijms25116187 crossref_primary_10_3892_ijmm_2021_5054 crossref_primary_10_1016_j_biochi_2021_06_008 crossref_primary_10_4252_wjsc_v12_i3_178 crossref_primary_10_1016_j_jacbts_2020_08_005 crossref_primary_10_1093_hmg_ddw237 crossref_primary_10_1021_acs_analchem_0c02271 crossref_primary_10_1002_pmic_201600002 crossref_primary_10_1089_scd_2021_0006 crossref_primary_10_1186_s13287_019_1196_y crossref_primary_10_3390_ijms20215467 crossref_primary_10_1007_s00266_022_03088_y crossref_primary_10_1186_s13619_020_00047_3 crossref_primary_10_1113_EP087396 crossref_primary_10_1016_j_coph_2021_03_003 crossref_primary_10_1007_s11914_024_00866_2 crossref_primary_10_1007_s13770_018_0139_5 crossref_primary_10_1186_s13287_023_03409_1 crossref_primary_10_3390_ijms241512457 crossref_primary_10_2217_nnm_2021_0224 crossref_primary_10_1016_j_jconrel_2017_07_023 crossref_primary_10_1080_21688370_2018_1431038 crossref_primary_10_1007_s10815_019_01687_4 crossref_primary_10_1155_2020_4356359 crossref_primary_10_3389_fcvm_2021_737512 crossref_primary_10_1002_cbin_12107 crossref_primary_10_3389_fcell_2021_628339 crossref_primary_10_1016_j_bonr_2021_101093 crossref_primary_10_1038_s41598_017_10448_1 crossref_primary_10_3390_ijms21030727 crossref_primary_10_1111_prd_12520 crossref_primary_10_1186_s13287_019_1469_5 crossref_primary_10_1002_jex2_72 crossref_primary_10_1016_j_bbagen_2016_07_028 crossref_primary_10_1016_j_jcyt_2018_06_012 crossref_primary_10_1155_2016_6093601 crossref_primary_10_1089_ten_tea_2019_0125 crossref_primary_10_1093_humrep_dey344 crossref_primary_10_1038_s41598_018_19581_x crossref_primary_10_3390_ijms24032085 crossref_primary_10_2147_IJN_S407029 crossref_primary_10_1186_s13036_024_00431_6 crossref_primary_10_3389_fncel_2022_992221 crossref_primary_10_1016_j_ijpharm_2021_120298 crossref_primary_10_1002_term_3355 crossref_primary_10_3390_pharmaceutics12121135 crossref_primary_10_1016_j_ejps_2016_09_017 crossref_primary_10_1016_j_jcyt_2023_04_011 crossref_primary_10_1007_s00018_020_03454_6 crossref_primary_10_3389_fcell_2020_00665 crossref_primary_10_1002_jcsm_12316 crossref_primary_10_1097_TA_0000000000002661 crossref_primary_10_3389_fimmu_2018_02538 crossref_primary_10_1155_2022_8537959 crossref_primary_10_1007_s10495_015_1203_4 crossref_primary_10_3390_ijms222413454 crossref_primary_10_1002_adhm_202301112 crossref_primary_10_1186_s13287_019_1182_4 crossref_primary_10_1186_s41232_023_00308_z crossref_primary_10_1007_s12015_018_9817_x crossref_primary_10_3390_ijms22073645 crossref_primary_10_1016_j_envadv_2023_100408 crossref_primary_10_1016_j_molmed_2017_09_002 crossref_primary_10_2174_1574888X14666190228103230 crossref_primary_10_1016_j_biotechadv_2018_09_001 crossref_primary_10_1186_s13287_023_03287_7 crossref_primary_10_1155_2020_8835986 crossref_primary_10_1007_s40139_017_0151_9 crossref_primary_10_1089_ten_teb_2019_0252 crossref_primary_10_3389_fneur_2018_00931 crossref_primary_10_3390_ijms23073869 crossref_primary_10_1016_j_bioactmat_2022_07_022 crossref_primary_10_1186_s13287_022_02874_4 crossref_primary_10_1021_acs_nanolett_2c04159 crossref_primary_10_1115_1_4050035 crossref_primary_10_1007_s10735_021_10017_x crossref_primary_10_3390_pharmaceutics12111022 crossref_primary_10_1002_jor_24212 crossref_primary_10_1089_cell_2017_0047 crossref_primary_10_1186_s12967_020_02622_3 crossref_primary_10_3390_jcm7100357 crossref_primary_10_3389_fmed_2024_1406547 crossref_primary_10_1016_j_bioactmat_2024_02_021 crossref_primary_10_3390_cells9030660 crossref_primary_10_3390_ijms20184597 crossref_primary_10_3892_ijmm_2024_5416 crossref_primary_10_1089_scd_2019_0131 crossref_primary_10_1186_s13287_018_1003_1 crossref_primary_10_1111_codi_15433 crossref_primary_10_1186_s12964_020_00650_6 crossref_primary_10_1007_s00441_018_2792_3 crossref_primary_10_1016_j_yexmp_2021_104608 crossref_primary_10_1007_s13770_022_00489_7 crossref_primary_10_1002_jcsm_13179 crossref_primary_10_1007_s12015_016_9713_1 crossref_primary_10_3390_bioengineering9070318 crossref_primary_10_1111_php_13633 crossref_primary_10_1093_function_zqaa009 crossref_primary_10_1152_japplphysiol_00914_2018 crossref_primary_10_3389_fendo_2021_681267 crossref_primary_10_3390_cancers14143350 crossref_primary_10_1055_a_2159_9128 crossref_primary_10_1161_CIRCRESAHA_118_312420 crossref_primary_10_3390_cells10020273 crossref_primary_10_1134_S2079086419050062 crossref_primary_10_1016_j_jconrel_2022_12_053 crossref_primary_10_3390_jcm8071025 crossref_primary_10_1186_s13287_019_1213_1 crossref_primary_10_2174_1566524022666220511123625 crossref_primary_10_1016_j_bcp_2018_02_004 crossref_primary_10_1186_s13395_024_00355_1 crossref_primary_10_18231_j_ijor_2021_014 crossref_primary_10_1016_j_omtn_2023_07_005 crossref_primary_10_12677_ACM_2023_1371706 crossref_primary_10_3389_fcell_2016_00107 crossref_primary_10_1016_j_bbagen_2018_06_003 crossref_primary_10_2174_1389201021666200907121530 crossref_primary_10_1007_s12035_019_1570_x crossref_primary_10_1186_s13018_025_05721_3 crossref_primary_10_15252_embr_202050863 crossref_primary_10_1016_j_bioactmat_2024_09_013 crossref_primary_10_2174_1389450119666180521100409 crossref_primary_10_1097_TA_0000000000003218 crossref_primary_10_1111_cpr_12857 crossref_primary_10_1515_revneuro_2017_0059 crossref_primary_10_1007_s00238_021_01874_6 crossref_primary_10_1002_bab_1561 crossref_primary_10_1007_s10616_017_0095_2 crossref_primary_10_1016_j_biomaterials_2019_01_049 crossref_primary_10_15171_apb_2016_041 crossref_primary_10_1007_s00535_024_02152_5 crossref_primary_10_3390_jcm10040711 crossref_primary_10_4103_1673_5374_266048 crossref_primary_10_1016_j_jot_2024_01_001 crossref_primary_10_1021_acs_molpharmaceut_3c00376 crossref_primary_10_1007_s12010_023_04510_0 crossref_primary_10_1186_s13287_017_0478_5 crossref_primary_10_3390_ijms22115929 crossref_primary_10_1155_2020_2187169 crossref_primary_10_3390_ph15050595 crossref_primary_10_3390_ijms23148038 crossref_primary_10_1016_j_pharmthera_2019_04_001 crossref_primary_10_1039_C7NR00352H crossref_primary_10_1097_JCMA_0000000000000899 crossref_primary_10_3390_cells9040991 crossref_primary_10_1016_j_tem_2016_10_003 crossref_primary_10_1021_acsbiomaterials_1c00217 crossref_primary_10_3390_biomedicines10010069 crossref_primary_10_1089_ten_tea_2023_0057 crossref_primary_10_18632_oncoscience_421 crossref_primary_10_4252_wjsc_v12_i12_1529 crossref_primary_10_1016_j_archoralbio_2019_104596 crossref_primary_10_3390_ijms24020965 crossref_primary_10_1038_s41392_023_01704_0 crossref_primary_10_3390_ijms24032704 crossref_primary_10_1080_15476286_2019_1582956 crossref_primary_10_1134_S1995078020040126 crossref_primary_10_3390_cells8020118 crossref_primary_10_1002_1873_3468_14333 crossref_primary_10_1016_j_exger_2023_112179 crossref_primary_10_1016_j_jisako_2024_04_008 crossref_primary_10_3389_fphys_2016_00024 crossref_primary_10_3389_fimmu_2016_00500 crossref_primary_10_3390_cells11152293 crossref_primary_10_1007_s12094_021_02750_2 crossref_primary_10_1111_nyas_13469 crossref_primary_10_1016_j_gpb_2017_03_006 crossref_primary_10_3389_fcell_2021_653296 crossref_primary_10_1016_j_job_2022_05_002 crossref_primary_10_14814_phy2_15855 crossref_primary_10_1177_0363546519876323 crossref_primary_10_3390_antiox12010044 crossref_primary_10_1016_j_biomaterials_2017_11_023 crossref_primary_10_3390_ijms22063265 crossref_primary_10_1038_s41598_023_45787_9 crossref_primary_10_3390_ijms20020236 crossref_primary_10_1002_cbin_10869 crossref_primary_10_3390_cells9020312 crossref_primary_10_1007_s11010_024_05184_w crossref_primary_10_1016_j_bbagen_2021_130059 crossref_primary_10_1016_j_bbrc_2016_12_077 crossref_primary_10_3389_fgene_2022_847679 crossref_primary_10_1002_adma_201804041 crossref_primary_10_3390_cells8040307 crossref_primary_10_4252_wjsc_v13_i6_521 crossref_primary_10_1002_adfm_201703853 crossref_primary_10_1016_j_jsxm_2017_07_005 crossref_primary_10_1007_s13273_017_0014_9 crossref_primary_10_1155_2023_4245704 crossref_primary_10_20517_rdodj_2024_16 crossref_primary_10_1016_j_biopha_2020_110442 crossref_primary_10_3390_cells11010043 crossref_primary_10_1155_2021_9919361 crossref_primary_10_1007_s12015_018_9852_7 crossref_primary_10_2217_epi_2019_0192 crossref_primary_10_1038_s41598_017_12885_4 crossref_primary_10_1155_2016_4612167 crossref_primary_10_1016_j_reth_2020_07_007 crossref_primary_10_1007_s13770_022_00446_4 crossref_primary_10_3390_cimb43030104 crossref_primary_10_1038_s41598_017_04559_y crossref_primary_10_3390_ijms23031662 crossref_primary_10_1016_j_bcp_2021_114714 crossref_primary_10_1016_j_molmed_2017_05_003 crossref_primary_10_3390_ijms17122028 crossref_primary_10_1177_0363546520926462 crossref_primary_10_1002_ctm2_70075 crossref_primary_10_1016_j_biochi_2019_07_009 crossref_primary_10_3389_fimmu_2020_609961 crossref_primary_10_1155_2016_5802529 crossref_primary_10_1186_s13287_019_1398_3 crossref_primary_10_3390_ijms221910542 crossref_primary_10_1039_D1NR01314A crossref_primary_10_1016_j_biomaterials_2025_123215 crossref_primary_10_3389_fcell_2020_00089 crossref_primary_10_1016_j_mtbio_2020_100067 crossref_primary_10_4252_wjsc_v14_i8_616 crossref_primary_10_1080_08820139_2020_1712416 crossref_primary_10_3389_fphys_2019_01569 crossref_primary_10_1186_s12951_023_01895_2 crossref_primary_10_1089_ten_teb_2018_0027 crossref_primary_10_3389_fbioe_2020_565561 crossref_primary_10_3171_2017_8_JNS1788 crossref_primary_10_1002_term_2947 crossref_primary_10_1186_s13287_015_0150_x crossref_primary_10_3390_ijms232314632 crossref_primary_10_1177_03635465231207060 crossref_primary_10_1042_BST20180079 crossref_primary_10_5966_sctm_2015_0285 crossref_primary_10_3390_cells9030675 crossref_primary_10_1016_j_archoralbio_2020_104946 crossref_primary_10_1007_s10974_019_09555_5 crossref_primary_10_1155_2018_9415367 crossref_primary_10_1155_2020_7593402 crossref_primary_10_1016_j_ebiom_2018_11_026 crossref_primary_10_1002_jcp_29721 crossref_primary_10_1080_20013078_2020_1807674 crossref_primary_10_1002_jex2_115 crossref_primary_10_3389_fbioe_2021_615920 crossref_primary_10_1186_s41232_021_00163_w crossref_primary_10_3389_fphys_2017_00275 crossref_primary_10_3390_ijms232416217 crossref_primary_10_1161_CIRCRESAHA_117_311589 crossref_primary_10_1186_s13287_020_01832_2 crossref_primary_10_3390_ijms23137306 crossref_primary_10_1155_2021_9983900 crossref_primary_10_1186_s13287_020_1562_9 crossref_primary_10_1007_s00216_021_03464_8 crossref_primary_10_3390_ijms23084074 crossref_primary_10_1039_C7BM00479F crossref_primary_10_1016_j_brainres_2019_146619 crossref_primary_10_1016_j_cellsig_2023_110980 crossref_primary_10_1016_j_bbamcr_2018_09_008 crossref_primary_10_1016_j_jddst_2024_105832 |
Cites_doi | 10.1371/journal.pone.0033115 10.1158/0008-5472.CAN-05-0137 10.1089/scd.2012.0395 10.2217/nnm.12.173 10.1038/ncb1596 10.1186/scrt194 10.1161/CIRCULATIONAHA.110.964684 10.1016/j.bbrc.2014.02.007 10.1002/jcb.20886 10.1016/j.scr.2009.12.003 10.1634/stemcells.2007-0637 10.1371/journal.pone.0037512 10.1074/jbc.M110.107821 10.1111/j.1582-4934.2009.00898.x 10.1152/ajpendo.00097.2012 10.1016/j.bbrc.2013.07.084 10.1152/ajpcell.00025.2012 10.1089/ten.2004.10.1093 10.1681/ASN.2008070798 10.1002/stem.1129 10.1073/pnas.0704421104 10.1096/fj.05-5211com 10.1634/stemcells.2008-0034 10.1681/ASN.2005080815 10.1016/S0021-9258(20)80573-0 10.1038/jcbfm.2013.152 |
ContentType | Journal Article |
Copyright | 2015 Federation of European Biochemical Societies FEBS Letters 589 (2015) 1873-3468 © 2015 Federation of European Biochemical Societies Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2015 Federation of European Biochemical Societies – notice: FEBS Letters 589 (2015) 1873-3468 © 2015 Federation of European Biochemical Societies – notice: Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved. |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.febslet.2015.03.031 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef AGRICOLA MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry Biology |
EISSN | 1873-3468 |
EndPage | 1265 |
ExternalDocumentID | 25862500 10_1016_j_febslet_2015_03_031 FEB2S0014579315002094 S0014579315002094 |
Genre | shortCommunication Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K -~X .~1 0R~ 0SF 1B1 1OC 1~. 1~5 24P 2WC 33P 4.4 4G. 53G 5GY 5RE 5VS 6I. 7-5 71M 8P~ AABNK AACTN AAEDW AAESR AAFTH AAHHS AAIKJ AAJUZ AALRI AANLZ AAQFI AASGY AAXRX AAXUO AAZKR ABBQC ABCUV ABFNM ABFRF ABGSF ABHUG ABJNI ABLJU ABMAC ABQWH ABVKL ABXGK ACAHQ ACCFJ ACCZN ACGFO ACGFS ACGOF ACIUM ACMXC ACNCT ACPOU ACXBN ACXQS ADAWD ADBBV ADBTR ADDAD ADEOM ADEZE ADKYN ADMGS ADOZA ADQTV ADUVX ADXAS ADZMN ADZOD AEEZP AEFWE AEGXH AEKER AENEX AEQDE AEQOU AEUQT AEUYR AEXQZ AFBPY AFFNX AFFPM AFGKR AFPWT AFVGU AFZJQ AGJLS AGYEJ AHBTC AIACR AIAGR AITUG AIURR AIWBW AJBDE AJRQY ALMA_UNASSIGNED_HOLDINGS AMRAJ AMYDB AZFZN AZVAB BAWUL BFHJK BMXJE C45 CBWCG CS3 DCZOG DIK DOVZS DRFUL DRMAN DRSTM DU5 E3Z EBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FIRID FNPLU FUBAC G-Q GBLVA GX1 HVGLF IHE IXB J1W KBYEO L7B LATKE LCYCR LEEKS LITHE LOXES LUTES LX3 LYRES M41 MEWTI MO0 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N9A NCXOZ O-L O9- OK1 OVD OZT P-8 P-9 P2P P2W PC. Q38 R9- RIG RNS ROL RPZ SCC SDF SDG SDP SEL SES SFE SSZ SUPJJ TEORI TR2 UHB UNMZH WBKPD WH7 WIH WIJ WIK WIN WOHZO WXSBR YK3 ZA5 ZZTAW ~02 AAHBH AAHQN AAIPD AAMNL AAYCA ADVLN AFWVQ AITYG AKRWK ALUQN ALVPJ HGLYW AAYWO AAYXX ACVFH ADCNI AEUPX AEYWJ AFPUW AGYGG AIGII AKBMS AKYEP CITATION CGR CUY CVF ECM EIF NPM 7X8 AAMMB AEFGJ AGXDD AIDQK AIDYY 7S9 L.6 |
ID | FETCH-LOGICAL-c6464-a152302f3206f25f17037f69d66e1d15b27feeaa60dc8c8db262c1b6610b3c293 |
IEDL.DBID | .~1 |
ISSN | 0014-5793 |
IngestDate | Fri Jul 11 06:18:29 EDT 2025 Fri Jul 11 10:49:30 EDT 2025 Thu Apr 03 07:06:18 EDT 2025 Tue Jul 01 02:46:41 EDT 2025 Thu Apr 24 23:03:48 EDT 2025 Wed Jan 22 16:24:33 EST 2025 Fri Feb 23 02:33:22 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | Mesenchymal stem cell Regeneration MicroRNA Exosome Skeletal muscle |
Language | English |
License | http://www.elsevier.com/open-access/userlicense/1.0 Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c6464-a152302f3206f25f17037f69d66e1d15b27feeaa60dc8c8db262c1b6610b3c293 |
Notes | Y.N.: the conception and design of the study, acquisition of data, analysis and interpretation of data, manuscript writing; S.M.: the conception and design of the study, acquisition of data, analysis and interpretation of data, manuscript writing; H.I.: acquisition of data, analysis and interpretation of data; S.M.: acquisition of data; T.N.: analysis and interpretation of data; N.K.; analysis and interpretation of data; T.A.: acquisition of data, analysis and interpretation of data; Y.H.: analysis and interpretation of data; M.O.: final approval of the version to be submitted. Yoshihiro Nakamura and Shigeru Miyaki contributed equally to this work. Author contributions ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-7181-5739 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0014579315002094 |
PMID | 25862500 |
PQID | 1680176765 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2000213449 proquest_miscellaneous_1680176765 pubmed_primary_25862500 crossref_citationtrail_10_1016_j_febslet_2015_03_031 crossref_primary_10_1016_j_febslet_2015_03_031 wiley_primary_10_1016_j_febslet_2015_03_031_FEB2S0014579315002094 elsevier_sciencedirect_doi_10_1016_j_febslet_2015_03_031 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 08, 2015 |
PublicationDateYYYYMMDD | 2015-05-08 |
PublicationDate_xml | – month: 05 year: 2015 text: May 08, 2015 day: 08 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | FEBS letters |
PublicationTitleAlternate | FEBS Lett |
PublicationYear | 2015 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Zhu (b0100) 2013 Bruno (b0060) 2009; 20 de Vrij (b0110) 2013; 8 Yamamoto, Morino, Nishio, Ugi, Yoshizaki, Kashiwagi, Maegawa (b0145) 2012; 303 Li (b0095) 2013; 22 Gnecchi (b0025) 2006; 20 Bian, Zhang, Duan, Wang, Min, Yu (b0080) 2013 Wang (b0140) 2010; 122 Sabin, Kikyo (b0055) 2013 Natsu, Ochi, Mochizuki, Hachisuka, Yanada, Yasunaga (b0020) 2004; 10 Xin (b0085) 2012; 30 Kunter, Rong, Djuric, Boor, Muller-Newen, Yu, Floege (b0030) 2006; 17 Maier, Ganu, Lotz (b0105) 1993; 268 Kosaka, Iguchi, Yoshioka, Takeshita, Matsuki, Ochiya (b0050) 2010; 285 Shimbo, Miyaki, Ishitobi, Kato, Kubo, Shimose, Ochi (b0130) 2014 Zhou (b0070) 2013; 4 Sassoli (b0115) 2012; 7 Caplan, Dennis (b0010) 2006; 98 Xin, Li, Cui, Yang, Zhang, Chopp (b0090) 2013; 33 Chan, Krichevsky, Kosik (b0125) 2005; 65 Banas (b0035) 2008; 26 Ortiz, Dutreil, Fattman, Pandey, Torres, Go, Phinney (b0040) 2007; 104 Valadi, Ekstrom, Bossios, Sjostrand, Lee, Lotvall (b0045) 2007; 9 Phinney, Prockop (b0005) 2007; 25 Lai (b0075) 2010; 4 Hoene, Runge, Haring, Schleicher, Weigert (b0120) 2013; 304 Nakasa, Ishikawa, Shi, Shibuya, Adachi, Ochi (b0135) 2010; 14 Bruno, Grange, Collino, Deregibus, Cantaluppi, Biancone, Tetta, Camussi (b0065) 2012; 7 Xia, Cao (b0015) 2013; 438 2007; 104 2013; 4 2010; 14 2009; 20 2013; 22 2006; 98 2006; 17 2013; 304 2010; 122 2010; 285 2005; 65 1993; 268 2013; 8 2012; 303 2012; 30 2004; 10 2006; 20 2013; 33 2013; 438 2008; 26 2007; 9 2014 2013 2012; 7 2010; 4 2007; 25 e_1_2_5_27_1 e_1_2_5_28_1 e_1_2_5_25_1 e_1_2_5_26_1 e_1_2_5_23_1 e_1_2_5_24_1 e_1_2_5_22_1 e_1_2_5_29_1 e_1_2_5_20_1 Bian S. (e_1_2_5_17_1) 2013 Sabin K. (e_1_2_5_12_1) 2013 e_1_2_5_15_1 e_1_2_5_14_1 e_1_2_5_9_1 e_1_2_5_16_1 e_1_2_5_8_1 e_1_2_5_11_1 e_1_2_5_7_1 e_1_2_5_10_1 e_1_2_5_6_1 e_1_2_5_13_1 e_1_2_5_5_1 e_1_2_5_4_1 e_1_2_5_3_1 e_1_2_5_2_1 e_1_2_5_19_1 e_1_2_5_18_1 Zhu Y.G. (e_1_2_5_21_1) 2013 e_1_2_5_30_1 |
References_xml | – volume: 7 start-page: e33115 year: 2012 ident: b0065 article-title: Microvesicles derived from mesenchymal stem cells enhance survival in a lethal model of acute kidney injury publication-title: PLoS One – volume: 285 start-page: 17442 year: 2010 end-page: 17452 ident: b0050 article-title: Secretory mechanisms and intercellular transfer of microRNAs in living cells publication-title: J. Biol. Chem. – volume: 22 start-page: 845 year: 2013 end-page: 854 ident: b0095 article-title: Exosomes derived from human umbilical cord mesenchymal stem cells alleviate liver fibrosis publication-title: Stem Cells Dev. – volume: 14 start-page: 2495 year: 2010 end-page: 2505 ident: b0135 article-title: Acceleration of muscle regeneration by local injection of muscle-specific microRNAs in rat skeletal muscle injury model publication-title: J. Cell Mol. Med. – volume: 4 start-page: 214 year: 2010 end-page: 222 ident: b0075 article-title: Exosome secreted by MSC reduces myocardial ischemia/reperfusion injury publication-title: Stem Cell Res. – volume: 30 start-page: 1556 year: 2012 end-page: 1564 ident: b0085 article-title: Exosome-mediated transfer of miR-133b from multipotent mesenchymal stromal cells to neural cells contributes to neurite outgrowth publication-title: Stem Cells – volume: 9 start-page: 654 year: 2007 end-page: 659 ident: b0045 article-title: Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells publication-title: Nat. Cell Biol. – volume: 20 start-page: 661 year: 2006 end-page: 669 ident: b0025 article-title: Evidence supporting paracrine hypothesis for Akt-modified mesenchymal stem cell-mediated cardiac protection and functional improvement publication-title: FASEB J. – volume: 17 start-page: 2202 year: 2006 end-page: 2212 ident: b0030 article-title: Transplanted mesenchymal stem cells accelerate glomerular healing in experimental glomerulonephritis publication-title: J. Am. Soc. Nephrol. – volume: 20 start-page: 1053 year: 2009 end-page: 1067 ident: b0060 article-title: Mesenchymal stem cell-derived microvesicles protect against acute tubular injury publication-title: J. Am. Soc. Nephrol. – year: 2013 ident: b0100 article-title: Human mesenchymal stem cell microvesicles for treatment of publication-title: Stem Cells – volume: 65 start-page: 6029 year: 2005 end-page: 6033 ident: b0125 article-title: MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells publication-title: Cancer Res. – year: 2014 ident: b0130 article-title: Exosome-formed synthetic microRNA-143 is transferred to osteosarcoma cells and inhibits their migration publication-title: Biochem. Biophys. Res. Commun. – year: 2013 ident: b0055 article-title: Microvesicles as mediators of tissue regeneration publication-title: Transl. Res. – volume: 268 start-page: 21527 year: 1993 end-page: 21532 ident: b0105 article-title: Interleukin-11, an inducible cytokine in human articular chondrocytes and synoviocytes, stimulates the production of the tissue inhibitor of metalloproteinases publication-title: J. Biol. Chem. – year: 2013 ident: b0080 article-title: Extracellular vesicles derived from human bone marrow mesenchymal stem cells promote angiogenesis in a rat myocardial infarction model publication-title: J. Mol. Med. (Berl.) – volume: 122 start-page: 1308 year: 2010 end-page: 1318 ident: b0140 article-title: MicroRNA-494 targeting both proapoptotic and antiapoptotic proteins protects against ischemia/reperfusion-induced cardiac injury publication-title: Circulation – volume: 98 start-page: 1076 year: 2006 end-page: 1084 ident: b0010 article-title: Mesenchymal stem cells as trophic mediators publication-title: J. Cell. Biochem. – volume: 7 start-page: e37512 year: 2012 ident: b0115 article-title: Bone marrow mesenchymal stromal cells stimulate skeletal myoblast proliferation through the paracrine release of VEGF publication-title: PLoS One – volume: 438 start-page: 382 year: 2013 end-page: 387 ident: b0015 article-title: Imaging the survival and utility of pre-differentiated allogeneic MSC in ischemic heart publication-title: Biochem. Biophys. Res. Commun. – volume: 26 start-page: 2705 year: 2008 end-page: 2712 ident: b0035 article-title: IFATS collection: in vivo therapeutic potential of human adipose tissue mesenchymal stem cells after transplantation into mice with liver injury publication-title: Stem Cells – volume: 25 start-page: 2896 year: 2007 end-page: 2902 ident: b0005 article-title: Concise review: mesenchymal stem/multipotent stromal cells: the state of transdifferentiation and modes of tissue repair–current views publication-title: Stem Cells – volume: 4 start-page: 34 year: 2013 ident: b0070 article-title: Exosomes released by human umbilical cord mesenchymal stem cells protect against cisplatin-induced renal oxidative stress and apoptosis in vivo and in vitro publication-title: Stem Cell Res. Ther. – volume: 303 start-page: E1419 year: 2012 end-page: 27 ident: b0145 article-title: MicroRNA-494 regulates mitochondrial biogenesis in skeletal muscle through mitochondrial transcription factor A and Forkhead box j3 publication-title: Am. J. Physiol. Endocrinol. Metab. – volume: 304 start-page: C128 year: 2013 end-page: C136 ident: b0120 article-title: Interleukin-6 promotes myogenic differentiation of mouse skeletal muscle cells: role of the STAT3 pathway publication-title: Am. J. Physiol. Cell Physiol. – volume: 10 start-page: 1093 year: 2004 end-page: 1112 ident: b0020 article-title: Allogeneic bone marrow-derived mesenchymal stromal cells promote the regeneration of injured skeletal muscle without differentiation into myofibers publication-title: Tissue Eng. – volume: 104 start-page: 11002 year: 2007 end-page: 11007 ident: b0040 article-title: Interleukin 1 receptor antagonist mediates the antiinflammatory and antifibrotic effect of mesenchymal stem cells during lung injury publication-title: Proc. Natl. Acad. Sci. U.S.A. – volume: 8 start-page: 1443 year: 2013 end-page: 1458 ident: b0110 article-title: Quantification of nanosized extracellular membrane vesicles with scanning ion occlusion sensing publication-title: Nanomedicine (Lond.) – volume: 33 start-page: 1711 year: 2013 end-page: 1715 ident: b0090 article-title: Systemic administration of exosomes released from mesenchymal stromal cells promote functional recovery and neurovascular plasticity after stroke in rats publication-title: J. Cereb. Blood Flow Metab. – volume: 304 start-page: C128 year: 2013 end-page: C136 article-title: Interleukin-6 promotes myogenic differentiation of mouse skeletal muscle cells: role of the STAT3 pathway publication-title: Am. J. Physiol. Cell Physiol. – volume: 8 start-page: 1443 year: 2013 end-page: 1458 article-title: Quantification of nanosized extracellular membrane vesicles with scanning ion occlusion sensing publication-title: Nanomedicine (Lond.) – volume: 25 start-page: 2896 year: 2007 end-page: 2902 article-title: Concise review: mesenchymal stem/multipotent stromal cells: the state of transdifferentiation and modes of tissue repair–current views publication-title: Stem Cells – volume: 7 start-page: e37512 year: 2012 article-title: Bone marrow mesenchymal stromal cells stimulate skeletal myoblast proliferation through the paracrine release of VEGF publication-title: PLoS One – volume: 4 start-page: 34 year: 2013 article-title: Exosomes released by human umbilical cord mesenchymal stem cells protect against cisplatin-induced renal oxidative stress and apoptosis in vivo and in vitro publication-title: Stem Cell Res. Ther. – volume: 438 start-page: 382 year: 2013 end-page: 387 article-title: Imaging the survival and utility of pre-differentiated allogeneic MSC in ischemic heart publication-title: Biochem. Biophys. Res. Commun. – volume: 26 start-page: 2705 year: 2008 end-page: 2712 article-title: IFATS collection: in vivo therapeutic potential of human adipose tissue mesenchymal stem cells after transplantation into mice with liver injury publication-title: Stem Cells – year: 2013 article-title: Microvesicles as mediators of tissue regeneration publication-title: Transl. Res. – volume: 9 start-page: 654 year: 2007 end-page: 659 article-title: Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells publication-title: Nat. Cell Biol. – volume: 98 start-page: 1076 year: 2006 end-page: 1084 article-title: Mesenchymal stem cells as trophic mediators publication-title: J. Cell. Biochem. – year: 2013 article-title: Extracellular vesicles derived from human bone marrow mesenchymal stem cells promote angiogenesis in a rat myocardial infarction model publication-title: J. Mol. Med. (Berl.) – volume: 14 start-page: 2495 year: 2010 end-page: 2505 article-title: Acceleration of muscle regeneration by local injection of muscle-specific microRNAs in rat skeletal muscle injury model publication-title: J. Cell Mol. Med. – volume: 285 start-page: 17442 year: 2010 end-page: 17452 article-title: Secretory mechanisms and intercellular transfer of microRNAs in living cells publication-title: J. Biol. Chem. – volume: 65 start-page: 6029 year: 2005 end-page: 6033 article-title: MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells publication-title: Cancer Res. – volume: 30 start-page: 1556 year: 2012 end-page: 1564 article-title: Exosome-mediated transfer of miR-133b from multipotent mesenchymal stromal cells to neural cells contributes to neurite outgrowth publication-title: Stem Cells – volume: 4 start-page: 214 year: 2010 end-page: 222 article-title: Exosome secreted by MSC reduces myocardial ischemia/reperfusion injury publication-title: Stem Cell Res. – year: 2013 article-title: Human mesenchymal stem cell microvesicles for treatment of endotoxin-induced acute lung injury in mice publication-title: Stem Cells – volume: 122 start-page: 1308 year: 2010 end-page: 1318 article-title: MicroRNA-494 targeting both proapoptotic and antiapoptotic proteins protects against ischemia/reperfusion-induced cardiac injury publication-title: Circulation – volume: 303 start-page: E1419 year: 2012 end-page: 27 article-title: MicroRNA-494 regulates mitochondrial biogenesis in skeletal muscle through mitochondrial transcription factor A and Forkhead box j3 publication-title: Am. J. Physiol. Endocrinol. Metab. – volume: 10 start-page: 1093 year: 2004 end-page: 1112 article-title: Allogeneic bone marrow-derived mesenchymal stromal cells promote the regeneration of injured skeletal muscle without differentiation into myofibers publication-title: Tissue Eng. – year: 2014 article-title: Exosome-formed synthetic microRNA-143 is transferred to osteosarcoma cells and inhibits their migration publication-title: Biochem. Biophys. Res. Commun. – volume: 104 start-page: 11002 year: 2007 end-page: 11007 article-title: Interleukin 1 receptor antagonist mediates the antiinflammatory and antifibrotic effect of mesenchymal stem cells during lung injury publication-title: Proc. Natl. Acad. Sci. U.S.A. – volume: 7 start-page: e33115 year: 2012 article-title: Microvesicles derived from mesenchymal stem cells enhance survival in a lethal model of acute kidney injury publication-title: PLoS One – volume: 268 start-page: 21527 year: 1993 end-page: 21532 article-title: Interleukin-11, an inducible cytokine in human articular chondrocytes and synoviocytes, stimulates the production of the tissue inhibitor of metalloproteinases publication-title: J. Biol. Chem. – volume: 33 start-page: 1711 year: 2013 end-page: 1715 article-title: Systemic administration of exosomes released from mesenchymal stromal cells promote functional recovery and neurovascular plasticity after stroke in rats publication-title: J. Cereb. Blood Flow Metab. – volume: 22 start-page: 845 year: 2013 end-page: 854 article-title: Exosomes derived from human umbilical cord mesenchymal stem cells alleviate liver fibrosis publication-title: Stem Cells Dev. – volume: 20 start-page: 661 year: 2006 end-page: 669 article-title: Evidence supporting paracrine hypothesis for Akt-modified mesenchymal stem cell-mediated cardiac protection and functional improvement publication-title: FASEB J. – volume: 20 start-page: 1053 year: 2009 end-page: 1067 article-title: Mesenchymal stem cell-derived microvesicles protect against acute tubular injury publication-title: J. Am. Soc. Nephrol. – volume: 17 start-page: 2202 year: 2006 end-page: 2212 article-title: Transplanted mesenchymal stem cells accelerate glomerular healing in experimental glomerulonephritis publication-title: J. Am. Soc. Nephrol. – year: 2013 ident: e_1_2_5_12_1 article-title: Microvesicles as mediators of tissue regeneration publication-title: Transl. Res. – ident: e_1_2_5_14_1 doi: 10.1371/journal.pone.0033115 – ident: e_1_2_5_26_1 doi: 10.1158/0008-5472.CAN-05-0137 – ident: e_1_2_5_20_1 doi: 10.1089/scd.2012.0395 – ident: e_1_2_5_23_1 doi: 10.2217/nnm.12.173 – ident: e_1_2_5_10_1 doi: 10.1038/ncb1596 – year: 2013 ident: e_1_2_5_17_1 article-title: Extracellular vesicles derived from human bone marrow mesenchymal stem cells promote angiogenesis in a rat myocardial infarction model publication-title: J. Mol. Med. (Berl.) – ident: e_1_2_5_15_1 doi: 10.1186/scrt194 – ident: e_1_2_5_29_1 doi: 10.1161/CIRCULATIONAHA.110.964684 – ident: e_1_2_5_27_1 doi: 10.1016/j.bbrc.2014.02.007 – ident: e_1_2_5_3_1 doi: 10.1002/jcb.20886 – ident: e_1_2_5_16_1 doi: 10.1016/j.scr.2009.12.003 – ident: e_1_2_5_2_1 doi: 10.1634/stemcells.2007-0637 – ident: e_1_2_5_24_1 doi: 10.1371/journal.pone.0037512 – ident: e_1_2_5_11_1 doi: 10.1074/jbc.M110.107821 – ident: e_1_2_5_28_1 doi: 10.1111/j.1582-4934.2009.00898.x – year: 2013 ident: e_1_2_5_21_1 article-title: Human mesenchymal stem cell microvesicles for treatment of E. coli endotoxin-induced acute lung injury in mice publication-title: Stem Cells – ident: e_1_2_5_30_1 doi: 10.1152/ajpendo.00097.2012 – ident: e_1_2_5_4_1 doi: 10.1016/j.bbrc.2013.07.084 – ident: e_1_2_5_25_1 doi: 10.1152/ajpcell.00025.2012 – ident: e_1_2_5_5_1 doi: 10.1089/ten.2004.10.1093 – ident: e_1_2_5_13_1 doi: 10.1681/ASN.2008070798 – ident: e_1_2_5_18_1 doi: 10.1002/stem.1129 – ident: e_1_2_5_9_1 doi: 10.1073/pnas.0704421104 – ident: e_1_2_5_6_1 doi: 10.1096/fj.05-5211com – ident: e_1_2_5_8_1 doi: 10.1634/stemcells.2008-0034 – ident: e_1_2_5_7_1 doi: 10.1681/ASN.2005080815 – ident: e_1_2_5_22_1 doi: 10.1016/S0021-9258(20)80573-0 – ident: e_1_2_5_19_1 doi: 10.1038/jcbfm.2013.152 |
SSID | ssj0001819 |
Score | 2.6214528 |
Snippet | •Mesenchymal stem cell exosomes promoted myogenesis and angiogenesis in vitro.•Mesenchymal stem cell exosomes accelerated muscle regeneration in a mouse injury... Mesenchymal stem cell (MSC) transplantation is used for treatment of many diseases. The paracrine role of MSCs in tissue regeneration is attracting particular... |
SourceID | proquest pubmed crossref wiley elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1257 |
SubjectTerms | angiogenesis Animals Cell Line cytokines Exosome Exosomes Humans Mesenchymal stem cell Mesenchymal Stromal Cells - cytology Mesenchymal Stromal Cells - metabolism Mice MicroRNA MicroRNAs - biosynthesis Muscle Development Muscle, Skeletal - cytology Muscle, Skeletal - physiology muscles Myoblasts, Skeletal - cytology Myoblasts, Skeletal - metabolism Regeneration Regeneration - physiology Skeletal muscle stem cells tissue repair |
Title | Mesenchymal-stem-cell-derived exosomes accelerate skeletal muscle regeneration |
URI | https://dx.doi.org/10.1016/j.febslet.2015.03.031 https://onlinelibrary.wiley.com/doi/abs/10.1016%2Fj.febslet.2015.03.031 https://www.ncbi.nlm.nih.gov/pubmed/25862500 https://www.proquest.com/docview/1680176765 https://www.proquest.com/docview/2000213449 |
Volume | 589 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYhpbSX0iZ9bB9BhdKbdi1Zku3j7pIlD5pDaejehJ5N0qw3xNnSXPrbO5LthBBCQsAHSUhY0nzSfBIzI4S-UJsLWVBHtGGCcMMNMZWWRLo8uEpqqXWy8j2QO4d8by7ma2ja-8JEs8pu72_39LRbdyWjbjZHZ8fH0ceXcgHwAkoDnKeKMUE5LyLKh_-uzTxAg7UUmHISa1978YxOhsGbBqYnWniJFOs0p3fpp9v88yadTfpo9hK96IgkHrd9fYXWfL2BNsc1HKIXl_grTqad6c58Az2d9Kln0_6Bt0108C16Htmjy4U-JTGeM4m3-MQBJv94h_3fZbNc-AZrC-Ux9rLHzW9IAV3Hi1UDf8Xn_lcKWx2l-xodzrZ_THdI97wCsZJLTjSNN8Is5CyTgYlAYfEXQVZOSk8dFYYVwXutZeZsaUtnmGSWGlDomckt0IQ3aL1e1v4dwrmGYwq1JffOcseysvK5s96GILguHBsg3k-qsl3s8fgExqnqjcxOVCcLFWWhshw-OkDDq2ZnbfCN-xqUvcTUDRQpUBD3Nf3cS1iBHOKE69ovV42iErR4IQsp7q4THZ5ibDxeDdDbFh5XPWYCTo2A0QEaJ7w8bChqtj1htzD-_vED_ICex1wy1iw_ovWL85X_BITqwmylFbOFnoz3v__ch9zufPIfHX0d4g |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5Rqopeqhb62D5TqerNu7FjO8lxWbHatrAnkLhZfqWFsllEWASX_vaOnQSEEKKqlIPlh2LPjD2frXkAfKE2EzKnjmjDBOGGG2JKLYl0WeVKqaXW0cp3LmcH_PuhOFyDSe8LE8wqu7O_PdPjad3VjDpqjk6PjoKPL-UCxQshDWKekj-Cxxy3b0hjMPxzY-eBKqzFwJST0P3GjWd0PKy8aZA-wcRLxGCnGb1PQd0FoLfxbFRI0-fwrEOSybid7AtY8_UmbI1rvEUvrpKvSbTtjI_mm_Bkuy9tTPoMb1sw3wuuR_bX1UKfkBDQmYRnfOJQKC-8S_zlslkufJNoi_Uh-LJPmt9YQryeLFYN_jU58z9j3OrA3pdwMN3Zn8xIl1-BWMklJ5qGJ2FWZSyVFRMVxd2fV7J0UnrqqDAsr7zXWqbOFrZwhklmqUGNnprMIk54Bev1svZvIMk03lOoLbh3ljuWFqXPnPW2qgTXuWMD4D1Rle2Cj4ccGCeqtzI7Vh0vVOCFSjP86ACG18NO2-gbDw0oeo6pW2KkUEM8NPRzz2GFfAgE17VfrhpFJarxXOZS3N8neDyF4Hi8HMDrVjyuZ8wEXhtRSAcwjvLyb0tR051tdkfI3_7_Aj_Bxmx_b1ftfpv_eAdPQ0u03Czew_r52cp_QHR1bj7G3fMXvZEeVw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mesenchymal-stem-cell-derived+exosomes+accelerate+skeletal+muscle+regeneration&rft.jtitle=FEBS+letters&rft.au=Nakamura%2C+Yoshihiro&rft.au=Miyaki%2C+Shigeru&rft.au=Ishitobi%2C+Hiroyuki&rft.au=Matsuyama%2C+Sho&rft.date=2015-05-08&rft.eissn=1873-3468&rft.volume=589&rft.issue=11&rft.spage=1257&rft_id=info:doi/10.1016%2Fj.febslet.2015.03.031&rft_id=info%3Apmid%2F25862500&rft.externalDocID=25862500 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0014-5793&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0014-5793&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0014-5793&client=summon |