Globular structures in roots accumulate phosphorus to extremely high concentrations following phosphorus addition

Crops with improved uptake of fertilizer phosphorus (P) would reduce P losses and confer environmental benefits. We examined how P‐sufficient 6‐week‐old soil‐grown Trifolium subterraneum plants, and 2‐week‐old seedlings in solution culture, accumulated P in roots after inorganic P (Pi) addition. In...

Full description

Saved in:
Bibliographic Details
Published inPlant, cell and environment Vol. 42; no. 6; pp. 1987 - 2002
Main Authors Ryan, Megan H., Kaur, Parwinder, Nazeri, Nazanin K., Clode, Peta L., Keeble‐Gagnère, Gabriel, Doolette, Ashlea L., Smernik, Ronald J., Van Aken, Olivier, Nicol, Dion, Maruyama, Hayato, Ezawa, Tatsuhiro, Lambers, Hans, Millar, A. Harvey, Appels, Rudi
Format Journal Article
LanguageEnglish
Published United States Wiley Subscription Services, Inc 01.06.2019
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Crops with improved uptake of fertilizer phosphorus (P) would reduce P losses and confer environmental benefits. We examined how P‐sufficient 6‐week‐old soil‐grown Trifolium subterraneum plants, and 2‐week‐old seedlings in solution culture, accumulated P in roots after inorganic P (Pi) addition. In contrast to our expectation that vacuoles would accumulate excess P, after 7 days, X‐ray microanalysis showed that vacuolar [P] remained low (<12 mmol kg−1). However, in the plants after P addition, some cortex cells contained globular structures extraordinarily rich in P (often >3,000 mmol kg−1), potassium, magnesium, and sodium. Similar structures were evident in seedlings, both before and after P addition, with their [P] increasing threefold after P addition. Nuclear magnetic resonance (NMR) spectroscopy showed seedling roots accumulated Pi following P addition, and transmission electron microscopy (TEM) revealed large plastids. For seedlings, we demonstrated that roots differentially expressed genes after P addition using RNAseq mapped to the T. subterraneum reference genome assembly and transcriptome profiles. Among the most up‐regulated genes after 4 hr was TSub_g9430.t1, which is similar to plastid envelope Pi transporters (PHT4;1, PHT4;4): expression of vacuolar Pi‐transporter homologs did not change. We suggest that subcellular P accumulation in globular structures, which may include plastids, aids cytosolic Pi homeostasis under high‐P availability. We examined clover roots after inorganic phosphorus (Pi) addition. Although vacuolar P concentration was unchanged, unexpectedly, P accumulated in intracellular globular structures and genes similar to plastid envelope Pi transporters were up‐regulated. The structures likely aid cytosolic Pi homeostasis.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0140-7791
1365-3040
1365-3040
DOI:10.1111/pce.13531