Structure of the STRA6 receptor for retinol uptake
Vitamin A is an essential nutrient for mammals, and its metabolites affect diverse biological processes. It is carried in the bloodstream as retinol by retinol binding protein (RBP); a protein called STRA6 is implicated in facilitating retinol translocation across the cell membrane. Chen et al. dete...
Saved in:
Published in | Science (American Association for the Advancement of Science) Vol. 353; no. 6302; p. 887 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Association for the Advancement of Science
26.08.2016
The American Association for the Advancement of Science |
Subjects | |
Online Access | Get full text |
ISSN | 0036-8075 1095-9203 1095-9203 |
DOI | 10.1126/science.aad8266 |
Cover
Loading…
Summary: | Vitamin A is an essential nutrient for mammals, and its metabolites affect diverse biological processes. It is carried in the bloodstream as retinol by retinol binding protein (RBP); a protein called STRA6 is implicated in facilitating retinol translocation across the cell membrane. Chen
et al.
determined the structure of zebrafish STRA6 to a resolution of 3.9 Å by electron microscopy. A lipophilic cleft is a likely binding site for RBP, and an opening in the cleft may allow retinol to diffuse into the membrane. Unexpectedly, the structure also includes bound calcium-modulated protein, but its function remains unclear.
Science
, this issue p.
887
The structure of a STRA6-calmodulin complex gives insight into how retinol (vitamin A) enters cells.
Vitamin A homeostasis is critical to normal cellular function. Retinol-binding protein (RBP) is the sole specific carrier in the bloodstream for hydrophobic retinol, the main form in which vitamin A is transported. The integral membrane receptor STRA6 mediates cellular uptake of vitamin A by recognizing RBP-retinol to trigger release and internalization of retinol. We present the structure of zebrafish STRA6 determined to 3.9-angstrom resolution by single-particle cryo-electron microscopy. STRA6 has one intramembrane and nine transmembrane helices in an intricate dimeric assembly. Unexpectedly, calmodulin is bound tightly to STRA6 in a noncanonical arrangement. Residues involved with RBP binding map to an archlike structure that covers a deep lipophilic cleft. This cleft is open to the membrane, suggesting a possible mode for internalization of retinol through direct diffusion into the lipid bilayer. |
---|---|
Bibliography: | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 These authors contributed equally to this work. |
ISSN: | 0036-8075 1095-9203 1095-9203 |
DOI: | 10.1126/science.aad8266 |