Purification and Characterization of an Inhibitor (Soluble Tumor Necrosis Factor Receptor) for Tumor Necrosis Factor and Lymphotoxin Obtained from the Serum Ultrafiltrates of Human Cancer Patients

Serum ultrafiltrates (SUF) from human patients with different types of cancer contain a blocking factor (BF) that inhibits the cytolytic activity of human tumor necrosis factor α (TNF-α) in vitro. BF is a protein with a molecular mass of 28 kDa on reducing sodium dodecyl sulfate/polyacrylamide gel e...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 87; no. 22; pp. 8781 - 8784
Main Authors Gatanaga, Tetsuya, Hwang, Chenduen, Kohr, William, Cappuccini, Fabio, Lucci, Joseph A., Edward W. B. Jeffes, Lentz, Rigdon, Tomich, John, Yamamoto, Robert S., Granger, Gale A.
Format Journal Article
LanguageEnglish
Published Washington, DC National Academy of Sciences of the United States of America 01.11.1990
National Acad Sciences
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Serum ultrafiltrates (SUF) from human patients with different types of cancer contain a blocking factor (BF) that inhibits the cytolytic activity of human tumor necrosis factor α (TNF-α) in vitro. BF is a protein with a molecular mass of 28 kDa on reducing sodium dodecyl sulfate/polyacrylamide gel electrophoresis (SDS/PAGE). The active material was purified to homogeneity by a combination of affinity chromatography, PAGE, and high-pressure liquid chromatography. Amino acid sequence analysis revealed that BF is derived from the membrane TNF receptor. Purified BF blocks the lytic activity of recombinant human and mouse TNF-α and recombinant human lymphotoxin on murine L929 cells in vitro. However, BF inhibits the lytic activity of TNF-α more effectively than it does that of lymphotoxin. The BF also inhibits the necrotizing activity of recombinant human TNF-α when coinjected into established cutaneous Meth A tumors in BALB/c mice. The BF may have an important role in (i) the regulation and control of TNF-α and lymphotoxin activity in cancer patients, (ii) interaction between the tumor and the host antitumor mechanisms, and (iii) use of systemically administered TNF-α in clinical trials with human cancer patients.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.87.22.8781