Improving the thermostability of GH49 dextranase AoDex by site-directed mutagenesis

As an indispensable enzyme for the hydrolysis of dextran, dextranase has been widely used in the fields of food and medicine. It should be noted that the weak thermostability of dextranase has become a restricted factor for industrial applications. This study aims to improve the thermostability of d...

Full description

Saved in:
Bibliographic Details
Published inAMB Express Vol. 13; no. 1; p. 7
Main Authors Wei, Zhen, Chen, Jinling, Xu, Linxiang, Liu, Nannan, Yang, Jie, Wang, Shujun
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 19.01.2023
Springer Nature B.V
SpringerOpen
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:As an indispensable enzyme for the hydrolysis of dextran, dextranase has been widely used in the fields of food and medicine. It should be noted that the weak thermostability of dextranase has become a restricted factor for industrial applications. This study aims to improve the thermostability of dextranase AoDex in glycoside hydrolase (GH) family 49 that derived from Arthrobacter oxydans KQ11. Some mutants were predicted and constructed based on B-factor analysis, PoPMuSiC and HotMuSiC algorithms, and four mutants exhibited higher heat resistance. Compared with the wild-type, mutant S357P showed the best improved thermostability with a 5.4-fold increase of half-life at 60 °C, and a 2.1-fold increase of half-life at 65 °C. Furthermore, S357V displayed the most obvious increase in enzymatic activity and thermostability simultaneously. Structural modeling analysis indicated that the improved thermostability of mutants might be attributed to the introduction of proline and hydrophobic effects, which generated the rigid optimization of the structural conformation. These results illustrated that it was effective to improve the thermostability of dextranase AoDex by rational design and site-directed mutagenesis. The thermostable mutant of dextranase AoDex has potential application value, and it can also provide references for engineering other thermostable dextranases of the GH49 family.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2191-0855
2191-0855
DOI:10.1186/s13568-023-01513-2