Interval type-2 intelligent fuzzy vehicle speed controller design using headlamp reflection detection and an adaptive neuro–fuzzy inference system

In this study, we present an algorithm to estimate the distance between a vehicle and a target object using light from headlights captured by a camera. In situations with limited distance data, we also design a fuzzy controller using the adaptive neuro–fuzzy inference system (ANFIS). To enhance robu...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 20; no. 6; p. e0323913
Main Authors Ryu, Seung-Min, Choi, Kang-Hyeon, Chang, Hyuk-Jun
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 02.06.2025
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this study, we present an algorithm to estimate the distance between a vehicle and a target object using light from headlights captured by a camera. In situations with limited distance data, we also design a fuzzy controller using the adaptive neuro–fuzzy inference system (ANFIS). To enhance robustness against disturbances, the interval type-2 approach is used. For the distance estimation algorithm, the vehicle is positioned at predefined intervals from the target object, capturing images of the headlights at each point. The region of interest containing the light is extracted from each image and segmented by light intensity. Weighted values are then assigned to each segment based on intensity, producing an image value that correlates with the distance. This image-derived value is then used as distance data for the design of the fuzzy controller. The controller is implemented using the interval type-2 fuzzy logic toolbox in MATLAB/SIMULINK, with vehicle speed and image intensity values as inputs and control torque as the output to adjust vehicle speed. The noise from the vehicle speed sensor is treated as a disturbance, and the performance of the interval type-2 fuzzy controller is evaluated under these disturbance conditions. Additionally, fuzzy controllers are designed for vehicle positions between 41–43 m and 47–49 m, and these controllers are trained using ANFIS to function effectively across the entire 41–49 m range. Simulation results demonstrate that, with the controller integrated into the vehicle system, the vehicle is successfully controlled to reach the target position.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0323913