Essential oil-derived compounds target core fatigue-related genes: A network pharmacology and molecular Docking approach

Fatigue is a widespread condition associated with various health issues, yet identifying specific bioactive compounds for its management remains challenging. This study integrates network pharmacology and molecular docking to uncover essential oil-derived compounds with potential antifatigue propert...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 20; no. 5; p. e0314125
Main Authors Dakpa, Gyaltsen, Chiang, Yu-Ting, Lin, Li-Yin, Tsao, Nai-Wen, Wang, Chung-Hsuan, Pérez-Sánchez, Horacio, Fernández, Jorge Ricardo Alonso, Wang, Sheng-Yang
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 28.05.2025
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Fatigue is a widespread condition associated with various health issues, yet identifying specific bioactive compounds for its management remains challenging. This study integrates network pharmacology and molecular docking to uncover essential oil-derived compounds with potential antifatigue properties by targeting key genes and molecular pathways. A comprehensive analysis of 872 essential oil compounds was conducted using PubChem, with target prediction via SwissTargetPrediction. The protein-protein interaction (PPI) network and KEGG pathway analysis identified core fatigue-related targets, including ALB, BCL2, EGFR, IL-6, and STAT3, in metabolic dysregulation and inflammatory responses linked to fatigue. Molecular docking exhibits strong binding affinity between key compounds such as Calamenene, T-cadinol, and Bornyl acetate and core targets, suggesting their potential antifatigue effects. However, ADMET analysis confirmed T-cadinol’s drug-likeness, suggesting good bioavailability and minimal toxicity risks. Thus, molecular docking revealed high binding affinity, which was further validated through a 100 ns MD simulation and demonstrated stable interactions with low root mean square deviation (RMSD). Additionally, hydrogen bond analysis confirmed that T-cadinol maintained consistent interactions with key residues such as Thr-790 in EGFR, Arg-222 in ALB, and Arg-104 in IL-6, indicating strong binding stability. While this study provides valuable computational insights, further in vitro and in vivo validation is necessary to confirm these findings and explore potential therapeutic applications.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0314125