Identification of a ferrireductase required for efficient transferrin-dependent iron uptake in erythroid cells

The reduction of iron is an essential step in the transferrin (Tf) cycle, which is the dominant pathway for iron uptake by red blood cell precursors. A deficiency in iron acquisition by red blood cells leads to hypochromic, microcytic anemia. Using a positional cloning strategy, we identified a gene...

Full description

Saved in:
Bibliographic Details
Published inNature genetics Vol. 37; no. 11; pp. 1264 - 1269
Main Authors Fleming, Mark D, Ohgami, Robert S, Campagna, Dean R, Greer, Eric L, Antiochos, Brendan, McDonald, Alice, Chen, Jing, Sharp, John J, Fujiwara, Yuko, Barker, Jane E
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group 01.11.2005
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The reduction of iron is an essential step in the transferrin (Tf) cycle, which is the dominant pathway for iron uptake by red blood cell precursors. A deficiency in iron acquisition by red blood cells leads to hypochromic, microcytic anemia. Using a positional cloning strategy, we identified a gene, six-transmembrane epithelial antigen of the prostate 3 (Steap3), responsible for the iron deficiency anemia in the mouse mutant nm1054. Steap3 is expressed highly in hematopoietic tissues, colocalizes with the Tf cycle endosome and facilitates Tf-bound iron uptake. Steap3 shares homology with F420H2:NADP+ oxidoreductases found in archaea and bacteria, as well as with the yeast FRE family of metalloreductases. Overexpression of Steap3 stimulates the reduction of iron, and mice lacking Steap3 are deficient in erythroid ferrireductase activity. Taken together, these findings indicate that Steap3 is an endosomal ferrireductase required for efficient Tf-dependent iron uptake in erythroid cells.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Present address: Center for Comparative Medicine 600D, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
Present address: Winship Cancer Institute, Emory University, 1365-C, Clifton Rd. N.E., Atlanta, GA 30322, USA
Member, Medical Scientist Training Program, Harvard Medical School, Tosteson Medical Education Center, Room 168, 260 Longwood Avenue, Boston, MA 02115, USA
ISSN:1061-4036
1546-1718
DOI:10.1038/ng1658