Frequency-oriented hierarchical fusion network for single image raindrop removal

Single image raindrop removal aims at recovering high-resolution images from degraded ones. However, existing methods primarily employ pixel-level supervision between image pairs to learn spatial features, thus ignoring the more discriminative frequency information. This drawback results in the loss...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 19; no. 5; p. e0301439
Main Authors Wang, Juncheng, Zhang, Jie, Guo, Shuai, Li, Bo
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 23.05.2024
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Single image raindrop removal aims at recovering high-resolution images from degraded ones. However, existing methods primarily employ pixel-level supervision between image pairs to learn spatial features, thus ignoring the more discriminative frequency information. This drawback results in the loss of high-frequency structures and the generation of diverse artifacts in the restored image. To ameliorate this deficiency, we propose a novel frequency-oriented Hierarchical Fusion Network (HFNet) for raindrop image restoration. Specifically, to compensate for spatial representation deficiencies, we design a dynamic adaptive frequency loss (DAFL), which allows the model to adaptively handle the high-frequency components that are difficult to recover. To handle spatially diverse raindrops, we propose a hierarchical fusion network to efficiently learn both contextual information and spatial features. Meanwhile, a calibrated attention mechanism is proposed to facilitate the transfer of valuable information. Comparative experiments with existing methods indicate the advantages of the proposed algorithm.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0301439