Saturation mutagenesis on Arg244 of the tryptophan C4-prenyltransferase FgaPT2 leads to enhanced catalytic ability and different preferences for tryptophan-containing cyclic dipeptides

FgaPT2 from Aspergillus fumigatus catalyzes a Friedel–Crafts alkylation at C-4 of l -tryptophan and is involved in the biosynthesis of the ergot alkaloids fumigaclavines. Several tryptophan-containing cyclic dipeptides had also been prenylated by FgaPT2, but the turnover rate ( k cat ) was low. Here...

Full description

Saved in:
Bibliographic Details
Published inApplied microbiology and biotechnology Vol. 100; no. 12; pp. 5389 - 5399
Main Authors Fan, Aili, Li, Shu-Ming
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.06.2016
Springer
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:FgaPT2 from Aspergillus fumigatus catalyzes a Friedel–Crafts alkylation at C-4 of l -tryptophan and is involved in the biosynthesis of the ergot alkaloids fumigaclavines. Several tryptophan-containing cyclic dipeptides had also been prenylated by FgaPT2, but the turnover rate ( k cat ) was low. Here, we report the generation of FgaPT2 mutants by saturation mutagenesis at the amino acid residue Arg244 to improve its catalytic efficiency toward cyclic dipeptides. Thirteen mutated enzymes demonstrated up to 76-fold higher turnover number toward seven cyclic dipeptides than the non-mutated FgaPT2. More importantly, the mutated enzymes exhibited different preferences toward these substrates. This study provides a convenient approach for creation of new biocatalysts for production of C4 -prenylated cyclic dipeptides.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0175-7598
1432-0614
DOI:10.1007/s00253-016-7365-3