Inferring the distribution of selective effects from a time inhomogeneous model

We have developed a Poisson random field model for estimating the distribution of selective effects of newly arisen nonsynonymous mutations that could be observed as polymorphism or divergence in samples of two related species under the assumption that the two species populations are not at mutation...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 14; no. 1; p. e0194709
Main Authors Amei, Amei, Zhou, Shilei
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 18.01.2019
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We have developed a Poisson random field model for estimating the distribution of selective effects of newly arisen nonsynonymous mutations that could be observed as polymorphism or divergence in samples of two related species under the assumption that the two species populations are not at mutation-selection-drift equilibrium. The model is applied to 91Drosophila genes by comparing levels of polymorphism in an African population of D. melanogaster with divergence to a reference strain of D. simulans. Based on the difference of gene expression level between testes and ovaries, the 91 genes were classified as 33 male-biased, 28 female-biased, and 30 sex-unbiased genes. Under a Bayesian framework, Markov chain Monte Carlo simulations are implemented to the model in which the distribution of selective effects is assumed to be Gaussian with a mean that may differ from one gene to the other to sample key parameters. Based on our estimates, the majority of newly-arisen nonsynonymous mutations that could contribute to polymorphism or divergence in Drosophila species are mildly deleterious with a mean scaled selection coefficient of -2.81, while almost 86% of the fixed differences between species are driven by positive selection. There are only 16.6% of the nonsynonymous mutations observed in sex-unbiased genes that are under positive selection in comparison to 30% of male-biased and 46% of female-biased genes that are beneficial. We also estimated that D. melanogaster and D. simulans may have diverged 1.72 million years ago.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Competing Interests: The authors have read the journal’s policy and have the following conflicts: SZ received support from Santander Bank in the form of a salary. This does not alter our adherence to PLOS ONE policies on sharing data and materials.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0194709