A microfluidics-based method for isolation and visualization of cells based on receptor-ligand interactions

Receptor-ligand binding has been analyzed at the protein level using isothermal titration calorimetry and surface plasmon resonance and at the cellular level using interaction-associated downstream gene induction/suppression. However, no currently available technique can characterize this interactio...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 17; no. 10; p. e0274601
Main Authors Dao, Long, Zhao, Qingnan, Hu, Jiemiao, Xia, Xueqing, Yang, Qing, Li, Shulin
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 06.10.2022
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Receptor-ligand binding has been analyzed at the protein level using isothermal titration calorimetry and surface plasmon resonance and at the cellular level using interaction-associated downstream gene induction/suppression. However, no currently available technique can characterize this interaction directly through visualization. In addition, all available assays require a large pool of cells; no assay capable of analyzing receptor-ligand interactions at the single-cell level is publicly available. Here, we describe a new microfluidic chip–based technique for analyzing and visualizing these interactions at the single-cell level. First, a protein is immobilized on a glass slide and a low-flow-rate pump is used to isolate cells that express receptors that bind to the immobilized ligand. Specifically, we demonstrate the efficacy of this technique by immobilizing biotin-conjugated FGL2 on an avidin-coated slide chip and passing a mixture of GFP-labeled wild-type T cells and RFP-labeled FcγRIIB-knockout T cells through the chip. Using automated scanning and counting, we found a large number of GFP+ T cells with binding activity but significantly fewer RFP+ FcγRIIB-knockout T cells. We further isolated T cells expressing a membrane-anchored, tumor-targeted IL-12 based on the receptor’s affinity to vimentin to confirm the versatility of our technique. This protocol allows researchers to isolate receptor-expressing cells in about 4 hours for further downstream processing.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0274601