Learning to sense from events via semantic variational autoencoder
In this paper, we introduce the concept of learning to sense, which aims to emulate a complex characteristic of human reasoning: the ability to monitor and understand a set of interdependent events for decision-making processes. Event datasets are composed of textual data and spatio-temporal feature...
Saved in:
Published in | PloS one Vol. 16; no. 12; p. e0260701 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
Public Library of Science
23.12.2021
Public Library of Science (PLoS) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In this paper, we introduce the concept of learning to sense, which aims to emulate a complex characteristic of human reasoning: the ability to monitor and understand a set of interdependent events for decision-making processes. Event datasets are composed of textual data and spatio-temporal features that determine where and when a given phenomenon occurred. In learning to sense, related events are mapped closely to each other in a semantic vector space, thereby identifying that they contain similar contextual meaning. However, learning a semantic vector space that satisfies both textual similarities and spatio-temporal constraints is a crucial challenge for event analysis and sensing. This paper investigates a Semantic Variational Autoencoder (SVAE) to fine-tune pre-trained embeddings according to both textual and spatio-temporal events of the class of interest. Experiments involving more than one hundred sensors show that our SVAE outperforms a competitive one-class classification baseline. Moreover, our proposal provides desirable learning requirements to sense scenarios, such as visualization of the sensor decision function and heat maps with the sensor's geographic impact. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Competing Interests: The authors have declared that no competing interests exist. |
ISSN: | 1932-6203 1932-6203 |
DOI: | 10.1371/journal.pone.0260701 |