Requirement of the 3'-UTR-dependent suppression of DAZL in oocytes for pre-implantation mouse development

Functional oocytes are produced through complex molecular and cellular processes. In particular, the contribution of post-transcriptional gene regulation mediated by RNA-binding proteins (RBPs) is crucial for controlling proper gene expression during this process. DAZL (deleted in azoospermia-like)...

Full description

Saved in:
Bibliographic Details
Published inPLoS genetics Vol. 14; no. 6; p. e1007436
Main Authors Fukuda, Kurumi, Masuda, Aki, Naka, Takuma, Suzuki, Atsushi, Kato, Yuzuru, Saga, Yumiko
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 08.06.2018
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Functional oocytes are produced through complex molecular and cellular processes. In particular, the contribution of post-transcriptional gene regulation mediated by RNA-binding proteins (RBPs) is crucial for controlling proper gene expression during this process. DAZL (deleted in azoospermia-like) is one of the RBPs required for the sexual differentiation of primordial germ cells and for the progression of meiosis in ovulated oocytes. However, the involvement of DAZL in the development of follicular oocytes is still unknown. Here, we show that Dazl is translationally suppressed in a 3'-UTR-dependent manner in follicular oocytes, and this suppression is required for normal pre-implantation development. We found that suppression of DAZL occurred in postnatal oocytes concomitant with the formation of primordial follicles, whereas Dazl mRNA was continuously expressed throughout oocyte development, raising the possibility that DAZL is dispensable for the survival and growth of follicular oocytes. Indeed, follicular oocyte-specific knockout of Dazl resulted in the production of normal number of pups. On the other hand, genetically modified female mice that overexpress DAZL produced fewer numbers of pups than the control due to defective pre-implantation development. Our data suggest that post-transcriptional suppression of DAZL in oocytes is an important mechanism controlling gene expression in the development of functional oocytes.
Bibliography:new_version
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
The authors have declared that no competing interests exist.
ISSN:1553-7404
1553-7390
1553-7404
DOI:10.1371/journal.pgen.1007436