Alcohol Exposure Rate Control Through Physiologically Based Pharmacokinetic Modeling

Background The instantaneous rate of change of alcohol exposure (slope) may contribute to changes in measures of brain function following administration of alcohol that are usually attributed to breath alcohol concentration (BrAC) acting alone. To test this proposition, a 2‐session experiment was de...

Full description

Saved in:
Bibliographic Details
Published inAlcoholism, clinical and experimental research Vol. 36; no. 6; pp. 1042 - 1049
Main Authors Plawecki, Martin H., Zimmermann, Ulrich S., Vitvitskiy, Victor, Doerschuk, Peter C., Crabb, David, O'Connor, Sean
Format Journal Article
LanguageEnglish
Published Hoboken, NJ Blackwell Publishing Ltd 01.06.2012
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Background The instantaneous rate of change of alcohol exposure (slope) may contribute to changes in measures of brain function following administration of alcohol that are usually attributed to breath alcohol concentration (BrAC) acting alone. To test this proposition, a 2‐session experiment was designed in which carefully prescribed, constant‐slope trajectories of BrAC intersected at the same exposure level and time since the exposure began. This paper presents the methods and limitations of the experimental design. Methods Individualized intravenous infusion rate profiles of 6% ethanol (EtOH) that achieved the constant‐slope trajectories for an individual were precomputed using a physiologically based pharmacokinetic model. Adjusting the parameters of the model allowed each infusion profile to account for the subject's EtOH distribution and elimination kinetics. Sessions were conducted in randomized order and made no use of feedback of BrAC measurements obtained during the session to modify the precalculated infusion profiles. In one session, an individual's time course of exposure, BrAC(t), was prescribed to rise at a constant rate of 6.0 mg% per minute until it reached 68 mg% and then descend at −1.0 mg% per minute; in the other, to rise at a rate of 3.0 mg% per minute. The 2 exposure trajectories were designed to intersect at a BrAC (t = 20 minutes) = 60 mg% at an experimental time of 20 minutes. Results Intersection points for 54 of 61 subjects were within prescribed deviations (range of ±3 mg% and ±4 minutes from the nominal intersection point). Conclusions Results confirmed the feasibility of applying the novel methods for achieving the intended time courses of the BrAC, with technical problems limiting success to 90% of the individuals tested.
Bibliography:Indiana Clinical Research Center - No. UL RR025761
Indiana Alcohol Research Center - No. P60- AA10722
istex:EAD0D14C6CA318B777E1EE7B55ABC84CCCB92305
National Science Foundation - No. 0836656
ark:/67375/WNG-WC48ZC40-N
ArticleID:ACER1706
Indiana General Clinical Research Center - No. MO1 RR750
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0145-6008
1530-0277
1530-0277
DOI:10.1111/j.1530-0277.2011.01706.x