Effect of cyclic bis(3′–5′)diguanylic acid and its analogs on bacterial biofilm formation

Abstract Cyclic bis(3′–5′)diguanylic acid (cyclic-di-GMP) functions as a second messenger in diverse species of bacteria to trigger wide-ranging physiological changes. We measured cyclic-di-GMP and its structural analogs such as cyclic bis(3′–5′)guanylic/adenylic acid (cyclic-GpAp), cyclic bis(3′–5′...

Full description

Saved in:
Bibliographic Details
Published inFEMS microbiology letters Vol. 301; no. 2; pp. 193 - 200
Main Authors Ishihara, Yuka, Hyodo, Mamoru, Hayakawa, Yoshihiro, Kamegaya, Taichi, Yamada, Keiko, Okamoto, Akira, Hasegawa, Tadao, Ohta, Michio
Format Journal Article
LanguageEnglish
Published Oxford, UK Blackwell Publishing Ltd 01.12.2009
Wiley-Blackwell
Oxford University Press
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Abstract Cyclic bis(3′–5′)diguanylic acid (cyclic-di-GMP) functions as a second messenger in diverse species of bacteria to trigger wide-ranging physiological changes. We measured cyclic-di-GMP and its structural analogs such as cyclic bis(3′–5′)guanylic/adenylic acid (cyclic-GpAp), cyclic bis(3′–5′)guanylic/inosinic acid (cyclic-GpIp) and monophosphorothioic acid of cyclic-di-GMP (cyclic-GpGps) for effects on the biofilm formation of Staphylococcus aureus and Pseudomonas aeruginosa. We constructed a knockout mutant of SA0701, which is a GGDEF motif protein relevant to diguanylate cyclase from S. aureus 2507. We confirmed that the biofilm formation of this mutant (MS2507ΔSA0701) was reduced. Cyclic-di-GMP corresponding to physiological intracellular levels given in the culture recovered the biofilm formation of MS2507ΔSA0701, whereas its analogs did not, indicating that unlike a previous suggestion, cyclic-di-GMP was involved in the positive regulation of the biofilm formation of S. aureus and its action was structurally specific. At a high concentration (200 μM), cyclic-di-GMP and its analogs showed suppression effects on the biofilm formation of S. aureus and P. aeruginosa, and according to the quantification study using costat analysis, the suppression potential was in the order of cyclic-di-GMP, cyclic-GpGps, cyclic-GpAp and cyclic-GpIp, suggesting that the suppression effect was not strictly specific and the change of base structure quantitatively affected the suppression activity.
Bibliography:Editor: David Clarke
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0378-1097
1574-6968
DOI:10.1111/j.1574-6968.2009.01825.x