Vegetation structural change since 1981 significantly enhanced the terrestrial carbon sink

Satellite observations show that leaf area index (LAI) has increased globally since 1981, but the impact of this vegetation structural change on the global terrestrial carbon cycle has not been systematically evaluated. Through process-based diagnostic ecosystem modeling, we find that the increase i...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 10; no. 1; pp. 4259 - 7
Main Authors Chen, Jing M., Ju, Weimin, Ciais, Philippe, Viovy, Nicolas, Liu, Ronggao, Liu, Yang, Lu, Xuehe
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 18.09.2019
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Satellite observations show that leaf area index (LAI) has increased globally since 1981, but the impact of this vegetation structural change on the global terrestrial carbon cycle has not been systematically evaluated. Through process-based diagnostic ecosystem modeling, we find that the increase in LAI alone was responsible for 12.4% of the accumulated terrestrial carbon sink (95 ± 5 Pg C) from 1981 to 2016, whereas other drivers of CO 2 fertilization, nitrogen deposition, and climate change (temperature, radiation, and precipitation) contributed to 47.0%, 1.1%, and −28.6% of the sink, respectively. The legacy effects of past changes in these drivers prior to 1981 are responsible for the remaining 65.5% of the accumulated sink from 1981 to 2016. These results refine the attribution of the land sink to the various drivers and would help constrain prognostic models that often have large uncertainties in simulating changes in vegetation and their impacts on the global carbon cycle. There lacks systematic analysis on the importance of vegetation structural change in the global terrestrial carbon cycle. Here the authors conducted a multi-model comparison analysis and find that the increase in leaf area index has been responsible for 12.4% of the accumulated terrestrial carbon sink from 1981 to 2016.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-019-12257-8