Stretched and compressed exponentials in the relaxation dynamics of a metallic glass-forming melt

The dynamics of glass-forming systems shows a multitude of features that are absent in normal liquids, such as non-exponential relaxation and a strong temperature-dependence of the relaxation time. Connecting these dynamic properties to the microscopic structure of the system is challenging because...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 9; no. 1; pp. 5334 - 7
Main Authors Wu, Zhen Wei, Kob, Walter, Wang, Wei-Hua, Xu, Limei
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 17.12.2018
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The dynamics of glass-forming systems shows a multitude of features that are absent in normal liquids, such as non-exponential relaxation and a strong temperature-dependence of the relaxation time. Connecting these dynamic properties to the microscopic structure of the system is challenging because of the presence of the structural disorder. Here we use computer simulations of a metallic glass-former to establish such a connection. By probing the temperature and wave-vector dependence of the intermediate scattering function we find that the relaxation dynamics of the glassy melt is directly related to the local arrangement of icosahedral structures: Isolated icosahedra give rise to a liquid-like stretched exponential relaxation whereas clusters of icosahedra lead to a compressed exponential relaxation that is reminiscent to the one found in a solid. Our results show that in metallic glass-formers these two types of relaxation processes can coexist and give rise to a dynamics that is surprisingly complex. Glasses show peculiar relaxation dynamics below glass transition temperature, yet a deeper understanding of this phenomenon is still lacking. Wu et al. show the coexistence of stretched and compressed relaxation in a metallic glass system and attribute their origins to different local cluster structures.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-018-07759-w