Weed responses to fallow management in Pacific Northwest dryland cropping systems

A two-year rotation of summer fallow (SF)/winter wheat (WW) is the most common cropping system in low precipitation areas of the U.S. Pacific Northwest (PNW). In SF, multiple tillage operations are used to manage weeds and maximize soil water storage and potential WW yield. Reduced tillage fallow (R...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 13; no. 9; p. e0204200
Main Authors San Martín, Carolina, Long, Dan S, Gourlie, Jennifer A, Barroso, Judit
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 20.09.2018
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A two-year rotation of summer fallow (SF)/winter wheat (WW) is the most common cropping system in low precipitation areas of the U.S. Pacific Northwest (PNW). In SF, multiple tillage operations are used to manage weeds and maximize soil water storage and potential WW yield. Reduced tillage fallow (RTF) is an alternative to SF that leaves >30% of the previous crop's residue on the surface. A four-year (2014-18) field study was conducted to evaluate the influence of SF and RTF on weed species density, cover and composition in dryland WW; determine if changes in these weed infestation attributes have any influence on crop density and yield; and evaluate economic costs of each type of fallow management. The experimental design was randomized complete block with four replications where each phase of SF/WW and RTF/WW rotations was present every year. Individual plots of WW were divided into a weedy sub-plot with no weed control, general area with chemical weed control, and weed-free sub-plot where weeds were manually removed. Infestations of annual grass and other weeds in weedy sub-plots increased throughout the study. Grass weed cover, consisting mainly of downy brome (Bromus tectorum L.), and total weed cover were significantly lower in WW following RTF than following SF in all years except 2018. Densities of grass and total weeds were similar in both fallow managements indicating that weed plants were larger in WW following SF than following RTF due to earlier or faster emergence. Grass cover differences were not found in general areas likely because of a reduced seedbank. When weeds were present, mean yield of WW was higher following RTF than SF indicating that weeds were less competitive in RTF. Reduced tillage fallow could improve weed management in fallow/WW cropping systems of the PNW compared to SF/WW, particularly if the most problematic species are grasses.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0204200