Development of human brain cortical network architecture during infancy

The brain’s mature functional network architecture has been extensively studied but the early emergence of the brain’s network organization remains largely unknown. In this study, leveraging a large sample (143 subjects) with longitudinal rsfMRI scans (333 datasets), we aimed to characterize the imp...

Full description

Saved in:
Bibliographic Details
Published inBrain Structure and Function Vol. 220; no. 2; pp. 1173 - 1186
Main Authors Gao, Wei, Alcauter, Sarael, Smith, J. Keith, Gilmore, John H., Lin, Weili
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.03.2015
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1863-2653
1863-2661
1863-2661
0340-2061
DOI10.1007/s00429-014-0710-3

Cover

Loading…
Abstract The brain’s mature functional network architecture has been extensively studied but the early emergence of the brain’s network organization remains largely unknown. In this study, leveraging a large sample (143 subjects) with longitudinal rsfMRI scans (333 datasets), we aimed to characterize the important developmental process of the brain’s functional network architecture during the first 2 years of life. Based on spatial independent component analysis and longitudinal linear mixed effect modeling, our results unveiled the detailed topology and growth trajectories of nine cortical functional networks. Within networks, our findings clearly separated the brains networks into two categories: primary networks were topologically adult-like in neonates while higher-order networks were topologically incomplete and isolated in neonates but demonstrated consistent synchronization during the first 2 years of life (connectivity increases 0.13–0.35). Between networks, our results demonstrated both network-level connectivity decreases (−0.02 to −0.64) and increases (0.05–0.18) but decreasing connections ( n  = 14) dominated increasing ones ( n  = 5). Finally, significant sex differences were observed with boys demonstrating faster network-level connectivity increases among the two frontoparietal networks (growth rate was 1.63e-4 per day for girls and 2.69e-4 per day for boys, p  < 1e-4). Overall, our study delineated the development of the whole brain functional architecture during the first 2 years of life featuring significant changes of both within- and between-network interactions.
AbstractList The brain’s mature functional network architecture has been extensively studied but the early emergence of the brain’s network organization remains largely unknown. In this study, leveraging a large sample (143 subjects) with longitudinal rsfMRI scans (333 datasets), we aimed to characterize the important developmental process of the brain’s functional network architecture during the first two years of life. Based on spatial independent component analysis and longitudinal linear mixed effect modeling, our results unveiled the detailed topology and growth trajectories of nine cortical functional networks. Within networks, our findings clearly separated the brains networks into two categories: primary networks were topologically adult-like in neonates while higher-order networks were topologically incomplete and isolated in neonates but demonstrated consistent synchronization during the first two years of life (connectivity increases 0.13~0.35). Between networks, our results demonstrated both network-level connectivity decreases (−0.02~−0.64) and increases (0.05~0.18) but decreasing connections (n=14) dominated increasing ones (n=5). Finally, significant sex differences were observed with boys demonstrating faster network-level connectivity increases among the two frontoparietal networks (growth rate was 1.63e-4 per day for girls and 2.69e-4 per day for boys, p<1e-4). Overall, our study delineated the development of the whole brain functional architecture during the first two years of life featuring significant changes of both within- and between-network interactions.
The brain's mature functional network architecture has been extensively studied but the early emergence of the brain's network organization remains largely unknown. In this study, leveraging a large sample (143 subjects) with longitudinal rsfMRI scans (333 datasets), we aimed to characterize the important developmental process of the brain's functional network architecture during the first 2 years of life. Based on spatial independent component analysis and longitudinal linear mixed effect modeling, our results unveiled the detailed topology and growth trajectories of nine cortical functional networks. Within networks, our findings clearly separated the brains networks into two categories: primary networks were topologically adult-like in neonates while higher-order networks were topologically incomplete and isolated in neonates but demonstrated consistent synchronization during the first 2 years of life (connectivity increases 0.13-0.35). Between networks, our results demonstrated both network-level connectivity decreases (-0.02 to -0.64) and increases (0.05-0.18) but decreasing connections (n = 14) dominated increasing ones (n = 5). Finally, significant sex differences were observed with boys demonstrating faster network-level connectivity increases among the two frontoparietal networks (growth rate was 1.63e-4 per day for girls and 2.69e-4 per day for boys, p < 1e-4). Overall, our study delineated the development of the whole brain functional architecture during the first 2 years of life featuring significant changes of both within- and between-network interactions.The brain's mature functional network architecture has been extensively studied but the early emergence of the brain's network organization remains largely unknown. In this study, leveraging a large sample (143 subjects) with longitudinal rsfMRI scans (333 datasets), we aimed to characterize the important developmental process of the brain's functional network architecture during the first 2 years of life. Based on spatial independent component analysis and longitudinal linear mixed effect modeling, our results unveiled the detailed topology and growth trajectories of nine cortical functional networks. Within networks, our findings clearly separated the brains networks into two categories: primary networks were topologically adult-like in neonates while higher-order networks were topologically incomplete and isolated in neonates but demonstrated consistent synchronization during the first 2 years of life (connectivity increases 0.13-0.35). Between networks, our results demonstrated both network-level connectivity decreases (-0.02 to -0.64) and increases (0.05-0.18) but decreasing connections (n = 14) dominated increasing ones (n = 5). Finally, significant sex differences were observed with boys demonstrating faster network-level connectivity increases among the two frontoparietal networks (growth rate was 1.63e-4 per day for girls and 2.69e-4 per day for boys, p < 1e-4). Overall, our study delineated the development of the whole brain functional architecture during the first 2 years of life featuring significant changes of both within- and between-network interactions.
The brain's mature functional network architecture has been extensively studied but the early emergence of the brain's network organization remains largely unknown. In this study, leveraging a large sample (143 subjects) with longitudinal rsfMRI scans (333 datasets), we aimed to characterize the important developmental process of the brain's functional network architecture during the first 2 years of life. Based on spatial independent component analysis and longitudinal linear mixed effect modeling, our results unveiled the detailed topology and growth trajectories of nine cortical functional networks. Within networks, our findings clearly separated the brains networks into two categories: primary networks were topologically adult-like in neonates while higher-order networks were topologically incomplete and isolated in neonates but demonstrated consistent synchronization during the first 2 years of life (connectivity increases 0.13-0.35). Between networks, our results demonstrated both network-level connectivity decreases (-0.02 to -0.64) and increases (0.05-0.18) but decreasing connections (n = 14) dominated increasing ones (n = 5). Finally, significant sex differences were observed with boys demonstrating faster network-level connectivity increases among the two frontoparietal networks (growth rate was 1.63e-4 per day for girls and 2.69e-4 per day for boys, p < 1e-4). Overall, our study delineated the development of the whole brain functional architecture during the first 2 years of life featuring significant changes of both within- and between-network interactions.
The brain’s mature functional network architecture has been extensively studied but the early emergence of the brain’s network organization remains largely unknown. In this study, leveraging a large sample (143 subjects) with longitudinal rsfMRI scans (333 datasets), we aimed to characterize the important developmental process of the brain’s functional network architecture during the first 2 years of life. Based on spatial independent component analysis and longitudinal linear mixed effect modeling, our results unveiled the detailed topology and growth trajectories of nine cortical functional networks. Within networks, our findings clearly separated the brains networks into two categories: primary networks were topologically adult-like in neonates while higher-order networks were topologically incomplete and isolated in neonates but demonstrated consistent synchronization during the first 2 years of life (connectivity increases 0.13–0.35). Between networks, our results demonstrated both network-level connectivity decreases (−0.02 to −0.64) and increases (0.05–0.18) but decreasing connections ( n  = 14) dominated increasing ones ( n  = 5). Finally, significant sex differences were observed with boys demonstrating faster network-level connectivity increases among the two frontoparietal networks (growth rate was 1.63e-4 per day for girls and 2.69e-4 per day for boys, p  < 1e-4). Overall, our study delineated the development of the whole brain functional architecture during the first 2 years of life featuring significant changes of both within- and between-network interactions.
The brain's mature functional network architecture has been extensively studied but the early emergence of the brain's network organization remains largely unknown. In this study, leveraging a large sample (143 subjects) with longitudinal rsfMRI scans (333 datasets), we aimed to characterize the important developmental process of the brain's functional network architecture during the first 2 years of life. Based on spatial independent component analysis and longitudinal linear mixed effect modeling, our results unveiled the detailed topology and growth trajectories of nine cortical functional networks. Within networks, our findings clearly separated the brains networks into two categories: primary networks were topologically adult-like in neonates while higher-order networks were topologically incomplete and isolated in neonates but demonstrated consistent synchronization during the first 2 years of life (connectivity increases 0.13-0.35). Between networks, our results demonstrated both network-level connectivity decreases (-0.02 to -0.64) and increases (0.05-0.18) but decreasing connections (n = 14) dominated increasing ones (n = 5). Finally, significant sex differences were observed with boys demonstrating faster network-level connectivity increases among the two frontoparietal networks (growth rate was 1.63e-4 per day for girls and 2.69e-4 per day for boys, p < 1e-4). Overall, our study delineated the development of the whole brain functional architecture during the first 2 years of life featuring significant changes of both within- and between-network interactions.
Author Gilmore, John H.
Smith, J. Keith
Lin, Weili
Gao, Wei
Alcauter, Sarael
AuthorAffiliation 1 Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, N.C., U.S.A
3 Department of Psychiatry, University of North Carolina at Chapel Hill, N.C., U.S.A
2 Department of Radiology, University of North Carolina at Chapel Hill, N.C., U.S.A
AuthorAffiliation_xml – name: 3 Department of Psychiatry, University of North Carolina at Chapel Hill, N.C., U.S.A
– name: 1 Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, N.C., U.S.A
– name: 2 Department of Radiology, University of North Carolina at Chapel Hill, N.C., U.S.A
Author_xml – sequence: 1
  givenname: Wei
  surname: Gao
  fullname: Gao, Wei
  email: wgao@email.unc.edu
  organization: Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill
– sequence: 2
  givenname: Sarael
  surname: Alcauter
  fullname: Alcauter, Sarael
  organization: Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill
– sequence: 3
  givenname: J. Keith
  surname: Smith
  fullname: Smith, J. Keith
  organization: Department of Radiology, University of North Carolina at Chapel Hill
– sequence: 4
  givenname: John H.
  surname: Gilmore
  fullname: Gilmore, John H.
  organization: Department of Psychiatry, University of North Carolina at Chapel Hill
– sequence: 5
  givenname: Weili
  surname: Lin
  fullname: Lin, Weili
  organization: Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24469153$$D View this record in MEDLINE/PubMed
BookMark eNqNkU9rFTEUxYNUbPv0A7iRATduRu_Nv8lsBKm2FQpudB0ymUxf6kzyTDIt_fbO8NpSC4qrG7jnHM7N75gchBgcIa8R3iNA8yEDcNrWgLyGBqFmz8gRKslqKiUePLwFOyTHOV8BiFZh-4IcUs5li4IdkbPP7tqNcTe5UKo4VNt5MqHqkvGhsjEVb81YBVduYvpZmWS3vjhb5uSqfk4-XFY-DCbY25fk-WDG7F7dzQ35cfrl-8l5ffHt7OvJp4vaStaWGhkAto4LilYxrhQIy6zkXHRU9s7KphPMGtlB37mGKkCkQ0t5j7xzwDu2IR_3ubu5m1xvl9rJjHqX_GTSrY7G6z83wW_1ZbzWXAlgEpaAd3cBKf6aXS568tm6cTTBxTlrlJJT5IrT_5CKtpGNEGvq2yfSqzinsPzEqlKsAb5g2JA3j8s_tL7HsQiavcCmmHNyg7a-mOLjeosfNYJewes9eL2A1yt4vTrxifM-_F8euvfk3YrSpUel_2r6Dc4Fvmg
CitedBy_id crossref_primary_10_1007_s10877_024_01250_2
crossref_primary_10_1093_cercor_bhy302
crossref_primary_10_3389_fnins_2021_810833
crossref_primary_10_7554_eLife_75401
crossref_primary_10_1093_cercor_bhae351
crossref_primary_10_1162_imag_a_00403
crossref_primary_10_1111_jcpp_12409
crossref_primary_10_1176_appi_ajp_21111176
crossref_primary_10_1016_j_alcohol_2017_10_007
crossref_primary_10_3389_fnhum_2015_00601
crossref_primary_10_1016_j_neubiorev_2017_05_020
crossref_primary_10_1016_j_neuroimage_2018_07_004
crossref_primary_10_1093_cercor_bhab408
crossref_primary_10_1038_s41598_022_11184_x
crossref_primary_10_1016_j_bbr_2020_113016
crossref_primary_10_1016_j_bandl_2017_07_007
crossref_primary_10_1523_JNEUROSCI_0779_20_2020
crossref_primary_10_1053_j_sult_2021_07_007
crossref_primary_10_21661_r_554291
crossref_primary_10_1016_j_cortex_2018_08_013
crossref_primary_10_1093_cercor_bhx205
crossref_primary_10_3389_fnins_2022_952355
crossref_primary_10_1007_s00429_022_02477_y
crossref_primary_10_1093_cercor_bhz066
crossref_primary_10_1111_desc_12928
crossref_primary_10_1111_ejn_15882
crossref_primary_10_1007_s11571_016_9419_8
crossref_primary_10_1371_journal_pone_0311666
crossref_primary_10_1177_197140091402700505
crossref_primary_10_1093_schbul_sbz053
crossref_primary_10_1097_SCS_0000000000007505
crossref_primary_10_3390_jpm11090854
crossref_primary_10_1523_JNEUROSCI_2891_18_2019
crossref_primary_10_1093_cercor_bhad288
crossref_primary_10_1177_1073858420921378
crossref_primary_10_1162_imag_a_00504
crossref_primary_10_1016_j_dcn_2020_100906
crossref_primary_10_1093_cercor_bhw269
crossref_primary_10_1186_s11689_020_09310_9
crossref_primary_10_1177_1073858416635986
crossref_primary_10_1016_j_nicl_2022_102962
crossref_primary_10_1093_cercor_bhu088
crossref_primary_10_1016_j_bpsc_2022_09_005
crossref_primary_10_1080_0952813X_2018_1544285
crossref_primary_10_1016_j_dcn_2022_101123
crossref_primary_10_1016_j_dcn_2025_101527
crossref_primary_10_1016_j_bpsc_2018_08_010
crossref_primary_10_1093_cercor_bhaa340
crossref_primary_10_1016_j_dcn_2015_10_002
crossref_primary_10_3389_fnins_2017_00233
crossref_primary_10_1093_brain_awab118
crossref_primary_10_1007_s00247_023_05794_4
crossref_primary_10_1093_cercor_bhx217
crossref_primary_10_1162_imag_a_00512
crossref_primary_10_1146_annurev_devpsych_121318_085124
crossref_primary_10_1038_s41398_023_02427_0
crossref_primary_10_1016_j_cortex_2020_10_022
crossref_primary_10_1016_j_siny_2024_101561
crossref_primary_10_1093_cercor_bhab041
crossref_primary_10_3389_fpsyt_2021_685754
crossref_primary_10_3390_philosophies3040029
crossref_primary_10_1016_j_nicl_2018_02_002
crossref_primary_10_3390_nu12072090
crossref_primary_10_1002_hbm_24541
crossref_primary_10_1111_desc_12613
crossref_primary_10_1016_j_neuroimage_2017_11_027
crossref_primary_10_1016_j_seizure_2024_02_021
crossref_primary_10_3389_fnins_2020_00476
crossref_primary_10_1016_j_neuroimage_2018_07_041
crossref_primary_10_1016_j_neuroimage_2020_117303
crossref_primary_10_1016_j_biopsych_2023_03_004
crossref_primary_10_1002_hbm_26718
crossref_primary_10_1016_j_dcn_2020_100850
crossref_primary_10_1038_s42003_024_06016_9
crossref_primary_10_1016_j_biopsych_2022_07_024
crossref_primary_10_1080_19012276_2023_2173275
crossref_primary_10_1109_JSEN_2024_3393299
crossref_primary_10_3389_fnins_2017_00685
crossref_primary_10_1162_imag_a_00165
crossref_primary_10_3389_fnhum_2022_853816
crossref_primary_10_1016_j_dcn_2020_100855
crossref_primary_10_1002_dneu_22701
crossref_primary_10_1016_j_neuroimage_2024_120660
crossref_primary_10_3758_s13423_018_1459_0
crossref_primary_10_1038_s41598_017_17610_9
crossref_primary_10_1002_jnr_24669
crossref_primary_10_1371_journal_pbio_3002653
crossref_primary_10_1016_j_neuroimage_2020_116688
crossref_primary_10_1016_j_semperi_2021_151473
crossref_primary_10_1016_j_bbi_2020_11_003
crossref_primary_10_1073_pnas_2002645117
crossref_primary_10_1093_cercor_bhae204
crossref_primary_10_3389_fpsyg_2023_1168739
crossref_primary_10_3389_fpsyt_2019_00122
crossref_primary_10_3389_fped_2015_00042
crossref_primary_10_31887_DCNS_2018_20_2_smarek
crossref_primary_10_3389_fnins_2024_1467446
crossref_primary_10_1162_imag_a_00145
crossref_primary_10_1038_s41380_024_02802_3
crossref_primary_10_1093_cercor_bhaa410
crossref_primary_10_1111_jcpp_13268
crossref_primary_10_1016_j_neuroscience_2017_01_031
crossref_primary_10_1016_j_dcn_2017_02_010
crossref_primary_10_1111_desc_12703
crossref_primary_10_1007_s00381_016_3069_3
crossref_primary_10_1016_j_neuroimage_2023_120342
crossref_primary_10_1523_JNEUROSCI_1209_24_2025
crossref_primary_10_1016_j_jad_2020_12_157
crossref_primary_10_1016_j_neuroscience_2017_05_011
crossref_primary_10_1016_j_neuroimage_2020_117630
crossref_primary_10_1016_j_dcn_2023_101235
crossref_primary_10_1515_revneuro_2022_0017
crossref_primary_10_31857_S0044467724010016
crossref_primary_10_1002_hbm_24308
crossref_primary_10_1016_j_nicl_2019_102083
crossref_primary_10_1038_s41598_022_20617_6
crossref_primary_10_1126_scitranslmed_aag2882
crossref_primary_10_1007_s00213_018_5161_8
crossref_primary_10_1016_j_neuroimage_2018_06_038
crossref_primary_10_1093_cercor_bhy028
crossref_primary_10_1089_brain_2019_0669
crossref_primary_10_1096_fj_201701290RR
crossref_primary_10_1016_j_dcn_2019_100632
crossref_primary_10_1073_pnas_1907892117
crossref_primary_10_1016_j_neuroimage_2018_10_019
crossref_primary_10_1002_hbm_24974
crossref_primary_10_1016_j_dcn_2020_100893
crossref_primary_10_1016_j_neuroimage_2019_116073
crossref_primary_10_1007_s00429_023_02681_4
crossref_primary_10_3389_fnhum_2020_497245
crossref_primary_10_1371_journal_pbio_3002909
crossref_primary_10_1093_cercor_bhac340
crossref_primary_10_1002_dneu_22742
crossref_primary_10_1016_j_cortex_2021_02_005
crossref_primary_10_1016_j_biopsych_2024_04_001
crossref_primary_10_1016_j_infbeh_2024_101980
crossref_primary_10_1097_SCS_0000000000005288
crossref_primary_10_1073_pnas_2414636122
crossref_primary_10_1002_pne2_70001
crossref_primary_10_1038_s41598_021_81207_6
crossref_primary_10_1016_j_neuroimage_2021_118562
crossref_primary_10_1093_cercor_bhac225
crossref_primary_10_1002_hbm_23552
crossref_primary_10_1038_s41467_023_44050_z
crossref_primary_10_1093_cercor_bhaa170
crossref_primary_10_1016_j_neuroimage_2017_01_079
crossref_primary_10_1038_s41562_018_0384_6
crossref_primary_10_1038_s41386_021_01066_7
crossref_primary_10_1016_j_biopsych_2021_03_026
crossref_primary_10_1016_j_dcn_2021_101007
crossref_primary_10_1016_j_tins_2017_06_003
crossref_primary_10_1007_s11055_024_01649_z
crossref_primary_10_1097_WNP_0000000000000772
crossref_primary_10_1016_j_tics_2017_05_002
crossref_primary_10_1093_sleep_zsae225
crossref_primary_10_1016_j_neuroimage_2018_07_057
crossref_primary_10_1088_1741_2552_acbb2d
crossref_primary_10_1038_s41593_018_0128_y
crossref_primary_10_2196_34854
crossref_primary_10_1016_j_psyneuen_2022_105896
crossref_primary_10_1016_j_tins_2021_01_008
crossref_primary_10_1523_JNEUROSCI_3980_15_2016
crossref_primary_10_1007_s40474_019_00163_z
crossref_primary_10_1016_j_neuroimage_2019_01_025
crossref_primary_10_1371_journal_pbio_1002260
crossref_primary_10_1103_PhysRevE_105_024304
crossref_primary_10_3389_fnins_2021_666020
crossref_primary_10_1016_j_dcn_2018_02_001
crossref_primary_10_1111_nyas_13036
crossref_primary_10_1177_08830738241282037
crossref_primary_10_1089_brain_2018_0625
crossref_primary_10_3389_fpsyg_2018_01968
crossref_primary_10_1523_JNEUROSCI_4333_14_2015
crossref_primary_10_3389_fpsyt_2020_531571
crossref_primary_10_1016_j_dcn_2025_101549
crossref_primary_10_1162_imag_a_00201
crossref_primary_10_1097_SCS_0000000000005537
crossref_primary_10_1016_j_neubiorev_2021_09_001
crossref_primary_10_1016_j_tins_2023_07_007
crossref_primary_10_1016_j_cortex_2022_06_009
crossref_primary_10_1016_j_dcn_2024_101397
crossref_primary_10_1038_s41598_021_98574_9
crossref_primary_10_3390_brainsci11121652
crossref_primary_10_1016_j_dr_2018_02_003
crossref_primary_10_1177_01650254241312136
crossref_primary_10_1063_1_5086809
crossref_primary_10_1016_j_dcn_2019_100706
crossref_primary_10_1016_j_neuroimage_2018_02_066
crossref_primary_10_1017_S1355617720000399
crossref_primary_10_1093_cercor_bhaa128
crossref_primary_10_1002_hbm_70021
crossref_primary_10_1017_S0007114516004281
crossref_primary_10_1523_JNEUROSCI_5072_13_2014
crossref_primary_10_1111_jcpp_13555
crossref_primary_10_1016_j_neuroimage_2022_119101
crossref_primary_10_1016_j_nic_2019_09_009
crossref_primary_10_1038_s41467_024_52242_4
crossref_primary_10_1093_cercor_bhx313
crossref_primary_10_1016_j_neuroimage_2021_117769
crossref_primary_10_1088_1741_2552_abfd46
crossref_primary_10_1152_jn_00362_2020
crossref_primary_10_1016_j_jaacop_2024_09_008
crossref_primary_10_1016_j_neuroimage_2024_120806
crossref_primary_10_7759_cureus_18721
crossref_primary_10_1016_j_neuroimage_2018_12_043
crossref_primary_10_1016_j_dcn_2021_100991
crossref_primary_10_1016_j_neuroimage_2021_118298
crossref_primary_10_1523_JNEUROSCI_2363_23_2024
crossref_primary_10_1016_j_dcn_2021_100976
crossref_primary_10_1093_cercor_bhab230
crossref_primary_10_1093_braincomms_fcac071
crossref_primary_10_1038_nrn_2018_1
crossref_primary_10_1016_j_dcn_2024_101496
crossref_primary_10_1016_j_dcn_2025_101551
crossref_primary_10_1093_cercor_bhac209
crossref_primary_10_1016_j_neuroimage_2017_04_059
crossref_primary_10_3174_ajnr_A5887
crossref_primary_10_1515_revneuro_2016_0007
crossref_primary_10_1523_JNEUROSCI_0480_21_2021
crossref_primary_10_1093_cercor_bhac321
crossref_primary_10_1093_braincomms_fcad288
Cites_doi 10.1038/npp.2009.115
10.1073/pnas.0601417103
10.1093/cercor/bhn117
10.1152/jn.00339.2011
10.1016/j.neuroimage.2013.08.048
10.3174/ajnr.A1256
10.1371/journal.pone.0018746
10.1016/j.neuroimage.2012.03.017
10.1162/jocn.1997.9.5.648
10.1016/j.neuroimage.2011.12.063
10.1016/j.biopsych.2010.10.029
10.1016/j.neuron.2010.08.017
10.2307/1130325
10.2190/H7E1-XMM7-GU9B-3HWR
10.1016/j.neuroimage.2003.12.015
10.1093/bioinformatics/btl205
10.1037/a0014722
10.1037/a0012975
10.1002/hbm.21252
10.1016/S0163-6383(79)80019-3
10.1111/1467-8624.00120
10.1002/hbm.20160
10.1196/annals.1440.011
10.1073/pnas.98.2.676
10.1002/hbm.21333
10.1152/jn.90463.2008
10.1016/j.biopsych.2010.07.003
10.1016/0167-8760(94)00081-O
10.1016/j.neuroimage.2009.05.012
10.1371/journal.pcbi.1000381
10.1073/pnas.071043098
10.1016/j.neuroimage.2010.06.016
10.1371/journal.pbio.1000157
10.1016/j.neuroimage.2012.08.052
10.1016/j.neuron.2007.10.038
10.1073/pnas.0504136102
10.3389/fnsys.2013.00034
10.1152/jn.90355.2008
10.1073/pnas.0704380104
10.1073/pnas.1204185109
10.1038/nrn755
10.1002/mrm.1910340409
10.1523/JNEUROSCI.5587-06.2007
10.1073/pnas.0905267106
10.1016/j.neuroimage.2005.09.065
10.1002/hbm.1048
10.1016/j.neuroimage.2004.07.051
10.1002/hbm.21204
10.1073/pnas.0800376105
10.1098/rstb.1998.0344
10.1097/PSY.0b013e318273bf33
10.1016/j.neuroimage.2011.10.018
10.1073/pnas.0308627101
10.1152/jn.00338.2011
10.1371/journal.pone.0036356
10.1038/jcbfm.1993.4
10.1073/pnas.0811221106
10.1073/pnas.1007921107
10.1016/j.biopsych.2010.06.029
10.1371/journal.pone.0025278
10.1016/j.cortex.2013.10.012
ContentType Journal Article
Copyright Springer-Verlag Berlin Heidelberg 2014
Springer-Verlag Berlin Heidelberg 2015
Copyright_xml – notice: Springer-Verlag Berlin Heidelberg 2014
– notice: Springer-Verlag Berlin Heidelberg 2015
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7RV
7TK
7X7
7XB
88A
88E
88G
8AO
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
KB0
LK8
M0S
M1P
M2M
M7P
NAPCQ
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
7X8
5PM
DOI 10.1007/s00429-014-0710-3
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Nursing & Allied Health Database
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
ProQuest Pharma Collection
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central
ProQuest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Psychology Database
Biological Science Database
Nursing & Allied Health Premium
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Psychology
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Nursing & Allied Health Source
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
ProQuest One Psychology

MEDLINE
Neurosciences Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Zoology
Medicine
EISSN 1863-2661
0340-2061
EndPage 1186
ExternalDocumentID PMC4850360
3605241221
24469153
10_1007_s00429_014_0710_3
Genre Journal Article
Comparative Study
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NINDS NIH HHS
  grantid: R01NS055754
– fundername: NIMH NIH HHS
  grantid: U01 MH070890
– fundername: NICHD NIH HHS
  grantid: R01 HD053000
– fundername: NIMH NIH HHS
  grantid: P50 MH064065
– fundername: NIMH NIH HHS
  grantid: R01MH070890-09A1
– fundername: NIMH NIH HHS
  grantid: R01 MH070890
– fundername: NINDS NIH HHS
  grantid: R01 NS055754
– fundername: NIMH NIH HHS
  grantid: R01 MH060352
GroupedDBID ---
-56
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06C
06D
0R~
0VY
1N0
1SB
203
23N
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
36B
3V.
4.4
406
408
409
40D
40E
53G
5GY
5VS
67Z
6J9
6NX
78A
7RV
7X7
88A
88E
8AO
8FE
8FH
8FI
8FJ
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABIVO
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACREN
ACZOJ
ADBBV
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADYPR
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHMBA
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
AXYYD
AZFZN
AZQEC
B-.
BA0
BBNVY
BDATZ
BENPR
BGNMA
BHPHI
BKEYQ
BPHCQ
BSONS
BVXVI
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
DU5
DWQXO
EBD
EBLON
EBS
EIOEI
EJD
EMB
EMOBN
EN4
ESBYG
EX3
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KPH
LAS
LK8
LLZTM
M0L
M1P
M2M
M4Y
M7P
MA-
N2Q
N9A
NAPCQ
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P9S
PF-
PQQKQ
PROAC
PSQYO
PSYQQ
PT4
Q2X
QOR
QOS
R89
R9I
ROL
RPX
RSV
S16
S1Z
S27
S37
S3B
SAP
SBL
SCLPG
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZN
T13
TEORI
TSG
TSK
TSV
TT1
TUC
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WJK
WK8
WOW
YLTOR
Z45
Z7U
Z82
Z83
Z87
Z8V
Z8W
Z91
ZMTXR
ZOVNA
~KM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7XB
8FK
ABRTQ
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
Q9U
7X8
5PM
ID FETCH-LOGICAL-c639t-130019e4521c8348805c3c6445b26dec67b53ca6b0dbe7280112f924d14be04b3
IEDL.DBID AGYKE
ISSN 1863-2653
1863-2661
IngestDate Thu Aug 21 18:43:20 EDT 2025
Thu Jul 10 17:09:39 EDT 2025
Fri Jul 11 05:36:08 EDT 2025
Fri Jul 25 19:24:54 EDT 2025
Thu Apr 03 07:04:41 EDT 2025
Thu Apr 24 22:56:35 EDT 2025
Tue Jul 01 00:38:10 EDT 2025
Fri Feb 21 02:35:24 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Early brain development
Sex effect
Resting state
Brain functional organization
Functional network
Language English
License http://www.springer.com/tdm
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c639t-130019e4521c8348805c3c6445b26dec67b53ca6b0dbe7280112f924d14be04b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/4850360
PMID 24469153
PQID 1658370465
PQPubID 38983
PageCount 14
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4850360
proquest_miscellaneous_1664214842
proquest_miscellaneous_1659767550
proquest_journals_1658370465
pubmed_primary_24469153
crossref_citationtrail_10_1007_s00429_014_0710_3
crossref_primary_10_1007_s00429_014_0710_3
springer_journals_10_1007_s00429_014_0710_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-03-01
PublicationDateYYYYMMDD 2015-03-01
PublicationDate_xml – month: 03
  year: 2015
  text: 2015-03-01
  day: 01
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Germany
– name: Heidelberg
PublicationTitle Brain Structure and Function
PublicationTitleAbbrev Brain Struct Funct
PublicationTitleAlternate Brain Struct Funct
PublicationYear 2015
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Sripada, King, Welsh, Garfinkel, Wang, Sripada, Liberzon (CR66) 2012; 74
Tau, Peterson (CR69) 2010; 35
Doria, Beckmann, Arichi, Merchant, Groppo, Turkheimer, Counsell, Murgasova, Aljabar, Nunes, Larkman, Rees, Edwards (CR17) 2011; 107
Raichle, MacLeod, Snyder, Powers, Gusnard, Shulman (CR52) 2001; 98
Smith, Fox, Miller, Glahn, Fox, Mackay, Filippini, Watkins, Toro, Laird, Beckmann (CR63) 2009; 106
Kelly, Di Martino, Uddin, Shehzad, Gee, Reiss, Margulies, Castellanos, Milham (CR41) 2009; 19
Tomasi, Volkow (CR70) 2012; 33
Biswal, Yetkin, Haughton, Hyde (CR4) 1995; 34
Lin, Zhu, Gao, Chen, Toh, Styner, Gerig, Smith, Biswal, Gilmore (CR44) 2008; 29
Andrews-Hanna, Snyder, Vincent, Lustig, Head, Raichle, Buckner (CR3) 2007; 56
Vincent, Kahn, Snyder, Raichle, Buckner (CR71) 2008; 100
Power, Fair, Schlaggar, Petersen (CR46) 2010; 67
Fair, Posner, Nagel, Bathula, Dias, Mills, Blythe, Giwa, Schmitt, Nigg (CR22) 2010; 68
Kail (CR40) 1993
Power, Barnes, Snyder, Schlaggar, Petersen (CR49) 2013; 76
Kilpatrick, Zald, Pardo, Cahill (CR42) 2006; 30
Fornito, Harrison, Zalesky, Simons (CR24) 2012; 109
Greicius, Srivastava, Reiss, Menon (CR35) 2004; 101
Wang, Zuo, Dai, Xia, Zhao, Zhao, Jia, Han, He (CR72) 2012
Amsterdam (CR2) 1972; 5
Gao, Gilmore, Giovanello, Smith, Shen, Zhu, Lin (CR30) 2011; 6
Harman, Rothbart, Posner (CR38) 1997; 21
Smith, Jenkinson, Woolrich, Beckmann, Behrens, Johansen-Berg, Bannister, De Luca, Drobnjak, Flitney, Niazy, Saunders, Vickers, Zhang, De Stefano, Brady, Matthews (CR62) 2004; 23
Posner, Rothbart (CR45) 1998; 353
Craddock, James, Holtzheimer, Hu, Mayberg (CR13) 2012; 33
Johnson (CR39) 2000; 71
Corbetta, Shulman (CR12) 2002; 3
Gusnard, Akbudak, Shulman, Raichle (CR36) 2001; 98
Spreng, Stevens, Chamberlain, Gilmore, Schacter (CR65) 2010; 53
Dickstein, Gorrostieta, Ombao, Goldberg, Brazel, Gable, Kelly, Gee, Zuo, Castellanos, Milham (CR16) 2010; 68
Gao, Gilmore, Shen, Smith, Zhu, Lin (CR31) 2012
Conboy, Sommerville, Kuhl (CR11) 2008; 44
Kostovic, Judas, Petanjek, Simic (CR43) 1995; 19
Power, Barnes, Snyder, Schlaggar, Petersen (CR48) 2012
Gao, Gilmore, Alcauter, Lin (CR32) 2013; 7
Rothbart, Posner (CR55) 2001
Field (CR23) 1979; 2
Stern, Fitzgerald, Welsh, Abelson, Taylor (CR67) 2012; 7
Rombouts, Barkhof, Goekoop, Stam, Scheltens (CR53) 2005; 26
Rothbart (CR54) 1990
Seeley, Menon, Schatzberg, Keller, Glover, Kenna, Reiss, Greicius (CR58) 2007; 27
Busch (CR7) 1995; 12
CR19
Friston, Frith, Liddle, Frackowiak (CR27) 1993; 13
Fair, Cohen, Dosenbach, Church, Miezin, Barch, Raichle, Petersen, Schlaggar (CR20) 2008; 105
Gao, Zhu, Giovanello, Smith, Shen, Gilmore, Lin (CR29) 2009; 106
Haith, Hazan, Goodman (CR37) 1988; 59
Supekar, Musen, Menon (CR68) 2009; 7
Ebbels, Buxton, Jones (CR18) 2006; 22
Prechtl (CR51) 1989
Shulman, Fiez, Corbetta, Buckner, Miezin (CR61) 1997; 9
Gao, Lin (CR28) 2012; 33
Smyser, Inder, Shimony, Hill, Degnan, Snyder, Neil (CR64) 2010
Gaulin (CR33) 1993
Calhoun, Adali, Pearlson, Pekar (CR8) 2001; 14
Chang, Glover (CR10) 2009; 47
Gilmore, Shi, Woolson, Knickmeyer, Short, Lin, Zhu, Hamer, Styner, Shen (CR34) 2012
Satterthwaite, Wolf, Loughead, Ruparel, Elliott, Hakonarson, Gur, Gur (CR56) 2012; 60
Shen, Davatzikos (CR59) 2004; 21
Fransson, Skiold, Horsch, Nordell, Blennow, Lagercrantz, Aden (CR26) 2007; 104
Power, Barnes, Snyder, Schlaggar, Petersen (CR47) 2012; 59
Zhang, Snyder, Fox, Sansbury, Shimony, Raichle (CR74) 2008; 100
Fox, Snyder, Vincent, Corbetta, Van Essen, Raichle (CR25) 2005; 102
Damoiseaux, Rombouts, Barkhof, Scheltens, Stam, Smith, Beckmann (CR14) 2006; 103
Buckner, Krienen, Castellanos, Diaz, Yeo (CR6) 2011; 106
Chai, Jacobs (CR9) 2009; 123
Yeo, Krienen, Sepulcre, Sabuncu, Lashkari, Hollinshead, Roffman, Smoller, Zollei, Polimeni, Fischl, Liu, Buckner (CR73) 2011; 106
Fair, Cohen, Power, Dosenbach, Church, Miezin, Schlaggar, Petersen (CR21) 2009; 5
Alcauter, Lin, Smith, Gilmore, Gao (CR1) 2013
Di Martino, Kelly, Grzadzinski, Zuo, Mennes, Mairena, Lord, Castellanos, Milham (CR15) 2010; 69
Power, Mitra, Laumann, Snyder, Schlaggar, Petersen (CR50) 2014; 84
Buckner, Andrews-Hanna, Schacter (CR5) 2008; 1124
Satterthwaite, Elliott, Gerraty, Ruparel, Loughead, Calkins, Eickhoff, Hakonarson, Gur, Gur, Wolf (CR57) 2013; 64
Shi, Yap, Wu, Jia, Gilmore, Lin, Shen (CR60) 2011; 6
JD Power (710_CR46) 2010; 67
MK Rothbart (710_CR54) 1990
RN Spreng (710_CR65) 2010; 53
JD Power (710_CR48) 2012
SM Smith (710_CR62) 2004; 23
DP Dickstein (710_CR16) 2010; 68
JD Power (710_CR49) 2013; 76
W Lin (710_CR44) 2008; 29
XJ Chai (710_CR9) 2009; 123
BT Conboy (710_CR11) 2008; 44
JD Power (710_CR50) 2014; 84
VD Calhoun (710_CR8) 2001; 14
TD Satterthwaite (710_CR57) 2013; 64
ER Stern (710_CR67) 2012; 7
TM Ebbels (710_CR18) 2006; 22
J Wang (710_CR72) 2012
LA Kilpatrick (710_CR42) 2006; 30
MD Greicius (710_CR35) 2004; 101
W Gao (710_CR30) 2011; 6
KJ Friston (710_CR27) 1993; 13
RL Buckner (710_CR5) 2008; 1124
F Shi (710_CR60) 2011; 6
B Amsterdam (710_CR2) 1972; 5
WW Seeley (710_CR58) 2007; 27
AM Kelly (710_CR41) 2009; 19
C Harman (710_CR38) 1997; 21
A Fornito (710_CR24) 2012; 109
W Gao (710_CR31) 2012
MH Johnson (710_CR39) 2000; 71
SM Smith (710_CR63) 2009; 106
M Kail (710_CR40) 1993
T Field (710_CR23) 1979; 2
MK Rothbart (710_CR55) 2001
T Busch (710_CR7) 1995; 12
V Doria (710_CR17) 2011; 107
D Tomasi (710_CR70) 2012; 33
DA Fair (710_CR21) 2009; 5
K Supekar (710_CR68) 2009; 7
DA Fair (710_CR20) 2008; 105
G Shulman (710_CR61) 1997; 9
B Biswal (710_CR4) 1995; 34
W Gao (710_CR28) 2012; 33
D Shen (710_CR59) 2004; 21
D Zhang (710_CR74) 2008; 100
CD Smyser (710_CR64) 2010
JS Damoiseaux (710_CR14) 2006; 103
S Alcauter (710_CR1) 2013
710_CR19
W Gao (710_CR32) 2013; 7
M Corbetta (710_CR12) 2002; 3
JD Power (710_CR47) 2012; 59
S Gaulin (710_CR33) 1993
HFR Prechtl (710_CR51) 1989
JR Andrews-Hanna (710_CR3) 2007; 56
DA Fair (710_CR22) 2010; 68
JL Vincent (710_CR71) 2008; 100
DA Gusnard (710_CR36) 2001; 98
RK Sripada (710_CR66) 2012; 74
A Martino Di (710_CR15) 2010; 69
I Kostovic (710_CR43) 1995; 19
TD Satterthwaite (710_CR56) 2012; 60
W Gao (710_CR29) 2009; 106
SA Rombouts (710_CR53) 2005; 26
BT Yeo (710_CR73) 2011; 106
P Fransson (710_CR26) 2007; 104
C Chang (710_CR10) 2009; 47
MM Haith (710_CR37) 1988; 59
RC Craddock (710_CR13) 2012; 33
JH Gilmore (710_CR34) 2012
MD Fox (710_CR25) 2005; 102
MI Posner (710_CR45) 1998; 353
ME Raichle (710_CR52) 2001; 98
GZ Tau (710_CR69) 2010; 35
RL Buckner (710_CR6) 2011; 106
21533194 - PLoS One. 2011 Apr 14;6(4):e18746
19620724 - Proc Natl Acad Sci U S A. 2009 Aug 4;106(31):13040-5
19794405 - Neuropsychopharmacology. 2010 Jan;35(1):147-68
22570705 - PLoS One. 2012;7(5):e36356
22440651 - Neuroimage. 2013 Aug 1;76:439-41
22368080 - Cereb Cortex. 2013 Mar;23(3):594-603
20728873 - Biol Psychiatry. 2010 Dec 15;68(12):1084-91
17329432 - J Neurosci. 2007 Feb 28;27(9):2349-56
15501092 - Neuroimage. 2004;23 Suppl 1:S208-19
19446646 - Neuroimage. 2009 Oct 1;47(4):1448-59
15954139 - Hum Brain Mapp. 2005 Dec;26(4):231-9
20600998 - Neuroimage. 2010 Oct 15;53(1):303-17
8417010 - J Cereb Blood Flow Metab. 1993 Jan;13(1):5-14
4679817 - Dev Psychobiol. 1972;5(4):297-305
23898240 - Front Syst Neurosci. 2013 Jul 26;7:34
18799601 - J Neurophysiol. 2008 Dec;100(6):3328-42
22926292 - Neuroimage. 2013 Jan 1;64:240-56
18322013 - Proc Natl Acad Sci U S A. 2008 Mar 11;105(10):4028-32
8524021 - Magn Reson Med. 1995 Oct;34(4):537-41
16945915 - Proc Natl Acad Sci U S A. 2006 Sep 12;103(37):13848-53
7622411 - Int J Psychophysiol. 1995 Mar;19(2):85-102
24248433 - Cereb Cortex. 2015 May;25(5):1176-87
19331451 - Behav Neurosci. 2009 Apr;123(2):276-83
24315034 - Cortex. 2014 Feb;51:56-66
15070770 - Proc Natl Acad Sci U S A. 2004 Mar 30;101(13):4637-42
21769991 - Hum Brain Mapp. 2012 Aug;33(8):1914-28
21795627 - J Neurophysiol. 2011 Nov;106(5):2322-45
16326115 - Neuroimage. 2006 Apr 1;30(2):452-61
21425398 - Hum Brain Mapp. 2012 Apr;33(4):849-60
15976020 - Proc Natl Acad Sci U S A. 2005 Jul 5;102(27):9673-8
22807481 - Proc Natl Acad Sci U S A. 2012 Jul 31;109(31):12788-93
19351894 - Proc Natl Acad Sci U S A. 2009 Apr 21;106(16):6790-5
21041625 - Proc Natl Acad Sci U S A. 2010 Nov 16;107(46):20015-20
23965122 - J Cogn Neurosci. 1997 Fall;9(5):648-63
9854264 - Philos Trans R Soc Lond B Biol Sci. 1998 Nov 29;353(1377):1915-27
23994314 - Neuroimage. 2014 Jan 1;84:320-41
22233733 - Neuroimage. 2012 Mar;60(1):623-32
20739018 - Biol Psychiatry. 2010 Nov 1;68(9):839-46
11559959 - Hum Brain Mapp. 2001 Nov;14(3):140-51
22109543 - Cereb Cortex. 2012 Nov;22(11):2478-85
18784212 - AJNR Am J Neuroradiol. 2008 Nov;29(10):1883-9
18793082 - Dev Psychol. 2008 Sep;44(5):1505-12
18400922 - Ann N Y Acad Sci. 2008 Mar;1124:1-38
11209064 - Proc Natl Acad Sci U S A. 2001 Jan 16;98 (2):676-82
22019881 - Neuroimage. 2012 Feb 1;59(3):2142-54
20826306 - Neuron. 2010 Sep 9;67(5):735-48
18054866 - Neuron. 2007 Dec 6;56(5):924-35
22537793 - Biol Psychiatry. 2013 Mar 1;73(5):472-81
19621066 - PLoS Biol. 2009 Jul;7(7):e1000157
21966479 - PLoS One. 2011;6(9):e25278
17878310 - Proc Natl Acad Sci U S A. 2007 Sep 25;104(39):15531-6
21391263 - Hum Brain Mapp. 2012 Jan;33(1):192-202
20237243 - Cereb Cortex. 2010 Dec;20(12):2852-62
21653723 - J Neurophysiol. 2011 Sep;106(3):1125-65
11259662 - Proc Natl Acad Sci U S A. 2001 Mar 27;98 (7):4259-64
21195388 - Biol Psychiatry. 2011 May 1;69(9):847-56
23115342 - Psychosom Med. 2012 Nov-Dec;74(9):904-11
18701759 - J Neurophysiol. 2008 Oct;100(4):1740-8
11994752 - Nat Rev Neurosci. 2002 Mar;3(3):201-15
19412534 - PLoS Comput Biol. 2009 May;5(5):e1000381
15050575 - Neuroimage. 2004 Apr;21(4):1508-17
10836560 - Child Dev. 2000 Jan-Feb;71(1):75-81
3359865 - Child Dev. 1988 Apr;59(2):467-79
16873528 - Bioinformatics. 2006 Jul 15;22(14):e99-107
18653667 - Cereb Cortex. 2009 Mar;19(3):640-57
References_xml – year: 1993
  ident: CR40
  publication-title: Are sex or gender relevant categories to language Performance? A Critical Review. The Development of Sex Differences and Similarities in Behavior
– volume: 35
  start-page: 147
  issue: 1
  year: 2010
  end-page: 168
  ident: CR69
  article-title: Normal development of brain circuits
  publication-title: Neuropsychopharmacology
  doi: 10.1038/npp.2009.115
– volume: 103
  start-page: 13848
  issue: 37
  year: 2006
  end-page: 13853
  ident: CR14
  article-title: Consistent resting-state networks across healthy subjects
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0601417103
– volume: 19
  start-page: 640
  issue: 3
  year: 2009
  end-page: 657
  ident: CR41
  article-title: Development of anterior cingulate functional connectivity from late childhood to early adulthood
  publication-title: Cereb Cortex
  doi: 10.1093/cercor/bhn117
– volume: 106
  start-page: 2322
  issue: 5
  year: 2011
  end-page: 2345
  ident: CR6
  article-title: The organization of the human cerebellum estimated by intrinsic functional connectivity
  publication-title: J Neurophysiol
  doi: 10.1152/jn.00339.2011
– volume: 84
  start-page: 320
  year: 2014
  end-page: 341
  ident: CR50
  article-title: Methods to detect, characterize, and remove motion artifact in resting state fMRI
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.08.048
– volume: 29
  start-page: 1883
  issue: 10
  year: 2008
  end-page: 1889
  ident: CR44
  article-title: Functional connectivity MR imaging reveals cortical functional connectivity in the developing brain
  publication-title: AJNR Am J Neuroradiol
  doi: 10.3174/ajnr.A1256
– volume: 5
  start-page: 297
  issue: 4
  year: 1972
  end-page: 305
  ident: CR2
  article-title: Mirror self-image reactions before age two. Developmental psychology
  publication-title: Psychology
– volume: 6
  start-page: e18746
  issue: 4
  year: 2011
  ident: CR60
  article-title: Infant brain atlases from neonates to 1- and 2-year-olds
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0018746
– volume: 76
  start-page: 439
  year: 2013
  end-page: 441
  ident: CR49
  article-title: Steps toward optimizing motion artifact removal in functional connectivity MRI; a reply to Carp
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.03.017
– volume: 9
  start-page: 648
  year: 1997
  end-page: 663
  ident: CR61
  article-title: Common blood flow changes across visual tasks: II. Decreases in cerebral cortex
  publication-title: J Cogn Neurosci
  doi: 10.1162/jocn.1997.9.5.648
– volume: 21
  start-page: 27
  year: 1997
  end-page: 43
  ident: CR38
  article-title: Distress and attention interactions in early infancy
  publication-title: Motiv Emot
– volume: 60
  start-page: 623
  issue: 1
  year: 2012
  end-page: 632
  ident: CR56
  article-title: Impact of in-scanner head motion on multiple measures of functional connectivity: relevance for studies of neurodevelopment in youth
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.12.063
– volume: 69
  start-page: 847
  issue: 9
  year: 2010
  end-page: 856
  ident: CR15
  article-title: Aberrant striatal functional connectivity in children with autism
  publication-title: Biol Psychiatry
  doi: 10.1016/j.biopsych.2010.10.029
– volume: 67
  start-page: 735
  issue: 5
  year: 2010
  end-page: 748
  ident: CR46
  article-title: The development of human functional brain networks
  publication-title: Neuron
  doi: 10.1016/j.neuron.2010.08.017
– ident: CR19
– volume: 59
  start-page: 467
  issue: 2
  year: 1988
  end-page: 479
  ident: CR37
  article-title: Expectation and anticipation of dynamic visual events by 3.5-month-old babies
  publication-title: Child Dev
  doi: 10.2307/1130325
– volume: 12
  start-page: 147
  year: 1995
  end-page: 158
  ident: CR7
  article-title: Gender differences in self-efficacy and attitudes toward computers
  publication-title: J Educ Comput Res
  doi: 10.2190/H7E1-XMM7-GU9B-3HWR
– volume: 21
  start-page: 1508
  issue: 4
  year: 2004
  end-page: 1517
  ident: CR59
  article-title: Measuring temporal morphological changes robustly in brain MR images via 4-dimensional template warping
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2003.12.015
– volume: 22
  start-page: e99
  issue: 14
  year: 2006
  end-page: e107
  ident: CR18
  article-title: SpringScape: visualisation of microarray and contextual bioinformatic data using spring embedding and an ‘information landscape’
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btl205
– volume: 123
  start-page: 276
  issue: 2
  year: 2009
  end-page: 283
  ident: CR9
  article-title: Sex differences in directional cue use in a virtual landscape
  publication-title: Behav Neurosci
  doi: 10.1037/a0014722
– volume: 44
  start-page: 1505
  issue: 5
  year: 2008
  end-page: 1512
  ident: CR11
  article-title: Cognitive control factors in speech perception at 11 months
  publication-title: Dev Psychol
  doi: 10.1037/a0012975
– volume: 33
  start-page: 849
  issue: 4
  year: 2012
  end-page: 860
  ident: CR70
  article-title: Gender differences in brain functional connectivity density
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.21252
– volume: 2
  start-page: 179
  year: 1979
  end-page: 184
  ident: CR23
  article-title: Differential behavioral and cardiac responses of 3-month-old infants to a mirror and peer
  publication-title: Infant Behav Dev
  doi: 10.1016/S0163-6383(79)80019-3
– volume: 71
  start-page: 75
  issue: 1
  year: 2000
  end-page: 81
  ident: CR39
  article-title: Functional brain development in infants: elements of an interactive specialization framework
  publication-title: Child Dev
  doi: 10.1111/1467-8624.00120
– volume: 26
  start-page: 231
  issue: 4
  year: 2005
  end-page: 239
  ident: CR53
  article-title: Altered resting state networks in mild cognitive impairment and mild Alzheimer’s disease: an fMRI study
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.20160
– year: 1990
  ident: CR54
  publication-title: Regulatory mechanisms in infant development the development of attention: research and theory
– volume: 1124
  start-page: 1
  year: 2008
  end-page: 38
  ident: CR5
  article-title: The brain’s default network: anatomy, function, and relevance to disease
  publication-title: Ann N Y Acad Sci
  doi: 10.1196/annals.1440.011
– volume: 98
  start-page: 676
  issue: 2
  year: 2001
  end-page: 682
  ident: CR52
  article-title: A default mode of brain function
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.98.2.676
– year: 2001
  ident: CR55
  publication-title: Mechanism and variation in the development of attentional networks. Handbook of developmental cognitive neuroscience
– volume: 33
  start-page: 1914
  issue: 8
  year: 2012
  end-page: 1928
  ident: CR13
  article-title: A whole brain fMRI atlas generated via spatially constrained spectral clustering
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.21333
– year: 2010
  ident: CR64
  article-title: Longitudinal analysis of neural network development in preterm infants
  publication-title: Cereb Cortex
– volume: 100
  start-page: 1740
  issue: 4
  year: 2008
  end-page: 1748
  ident: CR74
  article-title: Intrinsic functional relations between human cerebral cortex and thalamus
  publication-title: J Neurophysiol
  doi: 10.1152/jn.90463.2008
– volume: 68
  start-page: 1084
  issue: 12
  year: 2010
  end-page: 1091
  ident: CR22
  article-title: Atypical default network connectivity in youth with attention-deficit/hyperactivity disorder
  publication-title: Biol Psychiatry
  doi: 10.1016/j.biopsych.2010.07.003
– volume: 19
  start-page: 85
  issue: 2
  year: 1995
  end-page: 102
  ident: CR43
  article-title: Ontogenesis of goal-directed behavior: anatomo-functional considerations
  publication-title: Int J Psychophysiol
  doi: 10.1016/0167-8760(94)00081-O
– year: 2012
  ident: CR48
  article-title: Steps toward optimizing motion artifact removal in functional connectivity MRI; a reply to Carp
  publication-title: Neuroimage
– volume: 47
  start-page: 1448
  issue: 4
  year: 2009
  end-page: 1459
  ident: CR10
  article-title: Effects of model-based physiological noise correction on default mode network anti-correlations and correlations
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2009.05.012
– volume: 5
  start-page: e1000381
  issue: 5
  year: 2009
  ident: CR21
  article-title: Functional brain networks develop from a “local to distributed” organization
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1000381
– volume: 98
  start-page: 4259
  issue: 7
  year: 2001
  end-page: 4264
  ident: CR36
  article-title: Medial prefrontal cortex and self-referential mental activity: relation to a default mode of brain function
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.071043098
– volume: 53
  start-page: 303
  issue: 1
  year: 2010
  end-page: 317
  ident: CR65
  article-title: Default network activity, coupled with the frontoparietal control network, supports goal-directed cognition
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.06.016
– volume: 7
  start-page: e1000157
  issue: 7
  year: 2009
  ident: CR68
  article-title: Development of large-scale functional brain networks in children
  publication-title: PLoS Biol
  doi: 10.1371/journal.pbio.1000157
– volume: 64
  start-page: 240
  year: 2013
  end-page: 256
  ident: CR57
  article-title: An improved framework for confound regression and filtering for control of motion artifact in the preprocessing of resting-state functional connectivity data
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.08.052
– volume: 56
  start-page: 924
  issue: 5
  year: 2007
  end-page: 935
  ident: CR3
  article-title: Disruption of large-scale brain systems in advanced aging
  publication-title: Neuron
  doi: 10.1016/j.neuron.2007.10.038
– volume: 102
  start-page: 9673
  issue: 27
  year: 2005
  end-page: 9678
  ident: CR25
  article-title: The human brain is intrinsically organized into dynamic, anticorrelated functional networks
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0504136102
– volume: 7
  start-page: 34
  year: 2013
  ident: CR32
  article-title: The dynamic reorganization of the default-mode network during a visual classification task
  publication-title: Front Syst Neurosci
  doi: 10.3389/fnsys.2013.00034
– volume: 100
  start-page: 3328
  issue: 6
  year: 2008
  end-page: 3342
  ident: CR71
  article-title: Evidence for a frontoparietal control system revealed by intrinsic functional connectivity
  publication-title: J Neurophysiol
  doi: 10.1152/jn.90355.2008
– volume: 104
  start-page: 15531
  issue: 39
  year: 2007
  end-page: 15536
  ident: CR26
  article-title: Resting-state networks in the infant brain
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0704380104
– volume: 109
  start-page: 12788
  issue: 31
  year: 2012
  end-page: 12793
  ident: CR24
  article-title: Competitive and cooperative dynamics of large-scale brain functional networks supporting recollection
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1204185109
– year: 2012
  ident: CR31
  article-title: The synchronization within and interaction between the default and dorsal attention networks in early infancy
  publication-title: Cereb Cortex:doi
– volume: 3
  start-page: 201
  issue: 3
  year: 2002
  end-page: 215
  ident: CR12
  article-title: Control of goal-directed and stimulus-driven attention in the brain
  publication-title: Nat Rev Neurosci
  doi: 10.1038/nrn755
– year: 2012
  ident: CR34
  article-title: Longitudinal development of cortical and subcortical gray matter from birth to 2 years
  publication-title: Cereb Cortex
– volume: 34
  start-page: 537
  issue: 4
  year: 1995
  end-page: 541
  ident: CR4
  article-title: Functional connectivity in the motor cortex of resting human brain using echo-planar MRI
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.1910340409
– volume: 27
  start-page: 2349
  issue: 9
  year: 2007
  end-page: 2356
  ident: CR58
  article-title: Dissociable intrinsic connectivity networks for salience processing and executive control
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.5587-06.2007
– volume: 106
  start-page: 13040
  issue: 31
  year: 2009
  end-page: 13045
  ident: CR63
  article-title: Correspondence of the brain’s functional architecture during activation and rest
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0905267106
– volume: 30
  start-page: 452
  issue: 2
  year: 2006
  end-page: 461
  ident: CR42
  article-title: Sex-related differences in amygdala functional connectivity during resting conditions
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2005.09.065
– year: 2013
  ident: CR1
  article-title: Consistent anterior-posterior segregation of the insula during the first two years of life
  publication-title: Cerebral Cortex:doi
– volume: 14
  start-page: 140
  issue: 3
  year: 2001
  end-page: 151
  ident: CR8
  article-title: A method for making group inferences from functional MRI data using independent component analysis
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.1048
– volume: 23
  start-page: S208
  issue: Suppl 1
  year: 2004
  end-page: S219
  ident: CR62
  article-title: Advances in functional and structural MR image analysis and implementation as FSL
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2004.07.051
– year: 1993
  ident: CR33
  publication-title: How and why sex differences evolve, with spatial ability as a paradigm example. The development of sex differences and similarities in behavior
– volume: 33
  start-page: 192
  issue: 1
  year: 2012
  end-page: 202
  ident: CR28
  article-title: Frontal parietal control network regulates the anti-correlated default and dorsal attention networks
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.21204
– volume: 105
  start-page: 4028
  issue: 10
  year: 2008
  end-page: 4032
  ident: CR20
  article-title: The maturing architecture of the brain’s default network
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0800376105
– volume: 353
  start-page: 1915
  issue: 1377
  year: 1998
  end-page: 1927
  ident: CR45
  article-title: Attention, self-regulation and consciousness
  publication-title: Philos Trans R Soc Lond B Biol Sci
  doi: 10.1098/rstb.1998.0344
– volume: 74
  start-page: 904
  issue: 9
  year: 2012
  end-page: 911
  ident: CR66
  article-title: Neural dysregulation in posttraumatic stress disorder: evidence for disrupted equilibrium between salience and default mode brain networks
  publication-title: Psychosom Med
  doi: 10.1097/PSY.0b013e318273bf33
– volume: 59
  start-page: 2142
  issue: 3
  year: 2012
  end-page: 2154
  ident: CR47
  article-title: Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.10.018
– volume: 101
  start-page: 4637
  issue: 13
  year: 2004
  end-page: 4642
  ident: CR35
  article-title: Default-mode network activity distinguishes Alzheimer’s disease from healthy aging: evidence from functional MRI
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0308627101
– volume: 106
  start-page: 1125
  issue: 3
  year: 2011
  end-page: 1165
  ident: CR73
  article-title: The organization of the human cerebral cortex estimated by intrinsic functional connectivity
  publication-title: J Neurophysiol
  doi: 10.1152/jn.00338.2011
– year: 1989
  ident: CR51
  publication-title: Fetal behavior, fetal neurology
– volume: 7
  start-page: e36356
  issue: 5
  year: 2012
  ident: CR67
  article-title: Resting-state functional connectivity between fronto-parietal and default mode networks in obsessive-compulsive disorder
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0036356
– year: 2012
  ident: CR72
  article-title: Disrupted functional brain connectome in individuals at risk for Alzheimer’s disease
  publication-title: Biol Psychiatry
– volume: 13
  start-page: 5
  issue: 1
  year: 1993
  end-page: 14
  ident: CR27
  article-title: Functional connectivity: the principal-component analysis of large (PET) data sets
  publication-title: J Cereb Blood Flow Metab
  doi: 10.1038/jcbfm.1993.4
– volume: 106
  start-page: 6790
  issue: 16
  year: 2009
  end-page: 6795
  ident: CR29
  article-title: Evidence on the emergence of the brain’s default network from 2-week-old to 2-year-old healthy pediatric subjects
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0811221106
– volume: 107
  start-page: 20015
  issue: 46
  year: 2011
  end-page: 20020
  ident: CR17
  article-title: Emergence of resting state networks in the preterm human brain
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1007921107
– volume: 68
  start-page: 839
  issue: 9
  year: 2010
  end-page: 846
  ident: CR16
  article-title: Fronto-temporal spontaneous resting state functional connectivity in pediatric bipolar disorder
  publication-title: Biol Psychiatry
  doi: 10.1016/j.biopsych.2010.06.029
– volume: 6
  start-page: e25278
  issue: 9
  year: 2011
  ident: CR30
  article-title: Temporal and spatial evolution of brain network topology during the first two years of life
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0025278
– volume: 14
  start-page: 140
  issue: 3
  year: 2001
  ident: 710_CR8
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.1048
– volume: 33
  start-page: 1914
  issue: 8
  year: 2012
  ident: 710_CR13
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.21333
– volume: 19
  start-page: 85
  issue: 2
  year: 1995
  ident: 710_CR43
  publication-title: Int J Psychophysiol
  doi: 10.1016/0167-8760(94)00081-O
– volume: 35
  start-page: 147
  issue: 1
  year: 2010
  ident: 710_CR69
  publication-title: Neuropsychopharmacology
  doi: 10.1038/npp.2009.115
– volume: 12
  start-page: 147
  year: 1995
  ident: 710_CR7
  publication-title: J Educ Comput Res
  doi: 10.2190/H7E1-XMM7-GU9B-3HWR
– volume: 59
  start-page: 2142
  issue: 3
  year: 2012
  ident: 710_CR47
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.10.018
– volume: 105
  start-page: 4028
  issue: 10
  year: 2008
  ident: 710_CR20
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0800376105
– volume: 33
  start-page: 192
  issue: 1
  year: 2012
  ident: 710_CR28
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.21204
– volume: 71
  start-page: 75
  issue: 1
  year: 2000
  ident: 710_CR39
  publication-title: Child Dev
  doi: 10.1111/1467-8624.00120
– volume: 84
  start-page: 320
  year: 2014
  ident: 710_CR50
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.08.048
– volume: 107
  start-page: 20015
  issue: 46
  year: 2011
  ident: 710_CR17
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1007921107
– volume: 21
  start-page: 27
  year: 1997
  ident: 710_CR38
  publication-title: Motiv Emot
– volume: 69
  start-page: 847
  issue: 9
  year: 2010
  ident: 710_CR15
  publication-title: Biol Psychiatry
  doi: 10.1016/j.biopsych.2010.10.029
– volume: 76
  start-page: 439
  year: 2013
  ident: 710_CR49
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.03.017
– volume: 26
  start-page: 231
  issue: 4
  year: 2005
  ident: 710_CR53
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.20160
– volume: 101
  start-page: 4637
  issue: 13
  year: 2004
  ident: 710_CR35
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0308627101
– volume-title: Mechanism and variation in the development of attentional networks. Handbook of developmental cognitive neuroscience
  year: 2001
  ident: 710_CR55
– volume: 7
  start-page: e1000157
  issue: 7
  year: 2009
  ident: 710_CR68
  publication-title: PLoS Biol
  doi: 10.1371/journal.pbio.1000157
– volume: 56
  start-page: 924
  issue: 5
  year: 2007
  ident: 710_CR3
  publication-title: Neuron
  doi: 10.1016/j.neuron.2007.10.038
– volume: 21
  start-page: 1508
  issue: 4
  year: 2004
  ident: 710_CR59
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2003.12.015
– volume: 6
  start-page: e18746
  issue: 4
  year: 2011
  ident: 710_CR60
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0018746
– volume: 23
  start-page: S208
  issue: Suppl 1
  year: 2004
  ident: 710_CR62
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2004.07.051
– volume: 109
  start-page: 12788
  issue: 31
  year: 2012
  ident: 710_CR24
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1204185109
– volume-title: Are sex or gender relevant categories to language Performance? A Critical Review. The Development of Sex Differences and Similarities in Behavior
  year: 1993
  ident: 710_CR40
– volume: 29
  start-page: 1883
  issue: 10
  year: 2008
  ident: 710_CR44
  publication-title: AJNR Am J Neuroradiol
  doi: 10.3174/ajnr.A1256
– volume: 104
  start-page: 15531
  issue: 39
  year: 2007
  ident: 710_CR26
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0704380104
– volume: 103
  start-page: 13848
  issue: 37
  year: 2006
  ident: 710_CR14
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0601417103
– volume: 5
  start-page: 297
  issue: 4
  year: 1972
  ident: 710_CR2
  publication-title: Psychology
– volume: 27
  start-page: 2349
  issue: 9
  year: 2007
  ident: 710_CR58
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.5587-06.2007
– volume: 1124
  start-page: 1
  year: 2008
  ident: 710_CR5
  publication-title: Ann N Y Acad Sci
  doi: 10.1196/annals.1440.011
– volume: 53
  start-page: 303
  issue: 1
  year: 2010
  ident: 710_CR65
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.06.016
– volume: 106
  start-page: 6790
  issue: 16
  year: 2009
  ident: 710_CR29
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0811221106
– year: 2012
  ident: 710_CR34
  publication-title: Cereb Cortex
– volume: 3
  start-page: 201
  issue: 3
  year: 2002
  ident: 710_CR12
  publication-title: Nat Rev Neurosci
  doi: 10.1038/nrn755
– volume: 33
  start-page: 849
  issue: 4
  year: 2012
  ident: 710_CR70
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.21252
– year: 2012
  ident: 710_CR48
  publication-title: Neuroimage
– volume: 106
  start-page: 1125
  issue: 3
  year: 2011
  ident: 710_CR73
  publication-title: J Neurophysiol
  doi: 10.1152/jn.00338.2011
– volume: 102
  start-page: 9673
  issue: 27
  year: 2005
  ident: 710_CR25
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0504136102
– volume: 5
  start-page: e1000381
  issue: 5
  year: 2009
  ident: 710_CR21
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1000381
– volume: 106
  start-page: 2322
  issue: 5
  year: 2011
  ident: 710_CR6
  publication-title: J Neurophysiol
  doi: 10.1152/jn.00339.2011
– volume: 60
  start-page: 623
  issue: 1
  year: 2012
  ident: 710_CR56
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.12.063
– volume: 68
  start-page: 839
  issue: 9
  year: 2010
  ident: 710_CR16
  publication-title: Biol Psychiatry
  doi: 10.1016/j.biopsych.2010.06.029
– volume: 13
  start-page: 5
  issue: 1
  year: 1993
  ident: 710_CR27
  publication-title: J Cereb Blood Flow Metab
  doi: 10.1038/jcbfm.1993.4
– volume: 22
  start-page: e99
  issue: 14
  year: 2006
  ident: 710_CR18
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btl205
– volume: 2
  start-page: 179
  year: 1979
  ident: 710_CR23
  publication-title: Infant Behav Dev
  doi: 10.1016/S0163-6383(79)80019-3
– volume: 67
  start-page: 735
  issue: 5
  year: 2010
  ident: 710_CR46
  publication-title: Neuron
  doi: 10.1016/j.neuron.2010.08.017
– volume-title: How and why sex differences evolve, with spatial ability as a paradigm example. The development of sex differences and similarities in behavior
  year: 1993
  ident: 710_CR33
– volume: 100
  start-page: 1740
  issue: 4
  year: 2008
  ident: 710_CR74
  publication-title: J Neurophysiol
  doi: 10.1152/jn.90463.2008
– volume: 7
  start-page: 34
  year: 2013
  ident: 710_CR32
  publication-title: Front Syst Neurosci
– volume: 19
  start-page: 640
  issue: 3
  year: 2009
  ident: 710_CR41
  publication-title: Cereb Cortex
  doi: 10.1093/cercor/bhn117
– volume: 47
  start-page: 1448
  issue: 4
  year: 2009
  ident: 710_CR10
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2009.05.012
– volume: 353
  start-page: 1915
  issue: 1377
  year: 1998
  ident: 710_CR45
  publication-title: Philos Trans R Soc Lond B Biol Sci
  doi: 10.1098/rstb.1998.0344
– volume: 74
  start-page: 904
  issue: 9
  year: 2012
  ident: 710_CR66
  publication-title: Psychosom Med
  doi: 10.1097/PSY.0b013e318273bf33
– volume: 7
  start-page: e36356
  issue: 5
  year: 2012
  ident: 710_CR67
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0036356
– year: 2010
  ident: 710_CR64
  publication-title: Cereb Cortex
– volume: 34
  start-page: 537
  issue: 4
  year: 1995
  ident: 710_CR4
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.1910340409
– volume: 30
  start-page: 452
  issue: 2
  year: 2006
  ident: 710_CR42
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2005.09.065
– volume: 100
  start-page: 3328
  issue: 6
  year: 2008
  ident: 710_CR71
  publication-title: J Neurophysiol
  doi: 10.1152/jn.90355.2008
– volume-title: Fetal behavior, fetal neurology
  year: 1989
  ident: 710_CR51
– volume: 9
  start-page: 648
  year: 1997
  ident: 710_CR61
  publication-title: J Cogn Neurosci
  doi: 10.1162/jocn.1997.9.5.648
– year: 2012
  ident: 710_CR31
  publication-title: Cereb Cortex:doi
– year: 2012
  ident: 710_CR72
  publication-title: Biol Psychiatry
– volume-title: Regulatory mechanisms in infant development the development of attention: research and theory
  year: 1990
  ident: 710_CR54
– volume: 59
  start-page: 467
  issue: 2
  year: 1988
  ident: 710_CR37
  publication-title: Child Dev
  doi: 10.2307/1130325
– volume: 44
  start-page: 1505
  issue: 5
  year: 2008
  ident: 710_CR11
  publication-title: Dev Psychol
  doi: 10.1037/a0012975
– volume: 98
  start-page: 4259
  issue: 7
  year: 2001
  ident: 710_CR36
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.071043098
– volume: 98
  start-page: 676
  issue: 2
  year: 2001
  ident: 710_CR52
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.98.2.676
– ident: 710_CR19
  doi: 10.1016/j.cortex.2013.10.012
– year: 2013
  ident: 710_CR1
  publication-title: Cerebral Cortex:doi
– volume: 106
  start-page: 13040
  issue: 31
  year: 2009
  ident: 710_CR63
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0905267106
– volume: 68
  start-page: 1084
  issue: 12
  year: 2010
  ident: 710_CR22
  publication-title: Biol Psychiatry
  doi: 10.1016/j.biopsych.2010.07.003
– volume: 123
  start-page: 276
  issue: 2
  year: 2009
  ident: 710_CR9
  publication-title: Behav Neurosci
  doi: 10.1037/a0014722
– volume: 6
  start-page: e25278
  issue: 9
  year: 2011
  ident: 710_CR30
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0025278
– volume: 64
  start-page: 240
  year: 2013
  ident: 710_CR57
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.08.052
– reference: 21195388 - Biol Psychiatry. 2011 May 1;69(9):847-56
– reference: 22807481 - Proc Natl Acad Sci U S A. 2012 Jul 31;109(31):12788-93
– reference: 11994752 - Nat Rev Neurosci. 2002 Mar;3(3):201-15
– reference: 21653723 - J Neurophysiol. 2011 Sep;106(3):1125-65
– reference: 19331451 - Behav Neurosci. 2009 Apr;123(2):276-83
– reference: 15976020 - Proc Natl Acad Sci U S A. 2005 Jul 5;102(27):9673-8
– reference: 16945915 - Proc Natl Acad Sci U S A. 2006 Sep 12;103(37):13848-53
– reference: 19621066 - PLoS Biol. 2009 Jul;7(7):e1000157
– reference: 18322013 - Proc Natl Acad Sci U S A. 2008 Mar 11;105(10):4028-32
– reference: 22368080 - Cereb Cortex. 2013 Mar;23(3):594-603
– reference: 10836560 - Child Dev. 2000 Jan-Feb;71(1):75-81
– reference: 18799601 - J Neurophysiol. 2008 Dec;100(6):3328-42
– reference: 9854264 - Philos Trans R Soc Lond B Biol Sci. 1998 Nov 29;353(1377):1915-27
– reference: 24315034 - Cortex. 2014 Feb;51:56-66
– reference: 23115342 - Psychosom Med. 2012 Nov-Dec;74(9):904-11
– reference: 22233733 - Neuroimage. 2012 Mar;60(1):623-32
– reference: 8417010 - J Cereb Blood Flow Metab. 1993 Jan;13(1):5-14
– reference: 19446646 - Neuroimage. 2009 Oct 1;47(4):1448-59
– reference: 3359865 - Child Dev. 1988 Apr;59(2):467-79
– reference: 20739018 - Biol Psychiatry. 2010 Nov 1;68(9):839-46
– reference: 22440651 - Neuroimage. 2013 Aug 1;76:439-41
– reference: 22570705 - PLoS One. 2012;7(5):e36356
– reference: 18701759 - J Neurophysiol. 2008 Oct;100(4):1740-8
– reference: 11559959 - Hum Brain Mapp. 2001 Nov;14(3):140-51
– reference: 22926292 - Neuroimage. 2013 Jan 1;64:240-56
– reference: 20600998 - Neuroimage. 2010 Oct 15;53(1):303-17
– reference: 15954139 - Hum Brain Mapp. 2005 Dec;26(4):231-9
– reference: 18054866 - Neuron. 2007 Dec 6;56(5):924-35
– reference: 23965122 - J Cogn Neurosci. 1997 Fall;9(5):648-63
– reference: 18400922 - Ann N Y Acad Sci. 2008 Mar;1124:1-38
– reference: 20237243 - Cereb Cortex. 2010 Dec;20(12):2852-62
– reference: 21425398 - Hum Brain Mapp. 2012 Apr;33(4):849-60
– reference: 11259662 - Proc Natl Acad Sci U S A. 2001 Mar 27;98 (7):4259-64
– reference: 7622411 - Int J Psychophysiol. 1995 Mar;19(2):85-102
– reference: 15501092 - Neuroimage. 2004;23 Suppl 1:S208-19
– reference: 16326115 - Neuroimage. 2006 Apr 1;30(2):452-61
– reference: 24248433 - Cereb Cortex. 2015 May;25(5):1176-87
– reference: 21795627 - J Neurophysiol. 2011 Nov;106(5):2322-45
– reference: 19620724 - Proc Natl Acad Sci U S A. 2009 Aug 4;106(31):13040-5
– reference: 17329432 - J Neurosci. 2007 Feb 28;27(9):2349-56
– reference: 8524021 - Magn Reson Med. 1995 Oct;34(4):537-41
– reference: 16873528 - Bioinformatics. 2006 Jul 15;22(14):e99-107
– reference: 19794405 - Neuropsychopharmacology. 2010 Jan;35(1):147-68
– reference: 18653667 - Cereb Cortex. 2009 Mar;19(3):640-57
– reference: 18784212 - AJNR Am J Neuroradiol. 2008 Nov;29(10):1883-9
– reference: 21533194 - PLoS One. 2011 Apr 14;6(4):e18746
– reference: 23994314 - Neuroimage. 2014 Jan 1;84:320-41
– reference: 17878310 - Proc Natl Acad Sci U S A. 2007 Sep 25;104(39):15531-6
– reference: 15050575 - Neuroimage. 2004 Apr;21(4):1508-17
– reference: 22019881 - Neuroimage. 2012 Feb 1;59(3):2142-54
– reference: 21391263 - Hum Brain Mapp. 2012 Jan;33(1):192-202
– reference: 21041625 - Proc Natl Acad Sci U S A. 2010 Nov 16;107(46):20015-20
– reference: 23898240 - Front Syst Neurosci. 2013 Jul 26;7:34
– reference: 19412534 - PLoS Comput Biol. 2009 May;5(5):e1000381
– reference: 21966479 - PLoS One. 2011;6(9):e25278
– reference: 15070770 - Proc Natl Acad Sci U S A. 2004 Mar 30;101(13):4637-42
– reference: 4679817 - Dev Psychobiol. 1972;5(4):297-305
– reference: 22537793 - Biol Psychiatry. 2013 Mar 1;73(5):472-81
– reference: 18793082 - Dev Psychol. 2008 Sep;44(5):1505-12
– reference: 20826306 - Neuron. 2010 Sep 9;67(5):735-48
– reference: 20728873 - Biol Psychiatry. 2010 Dec 15;68(12):1084-91
– reference: 21769991 - Hum Brain Mapp. 2012 Aug;33(8):1914-28
– reference: 22109543 - Cereb Cortex. 2012 Nov;22(11):2478-85
– reference: 19351894 - Proc Natl Acad Sci U S A. 2009 Apr 21;106(16):6790-5
– reference: 11209064 - Proc Natl Acad Sci U S A. 2001 Jan 16;98 (2):676-82
SSID ssj0059819
ssj0012825
Score 2.5287437
Snippet The brain’s mature functional network architecture has been extensively studied but the early emergence of the brain’s network organization remains largely...
The brain's mature functional network architecture has been extensively studied but the early emergence of the brain's network organization remains largely...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1173
SubjectTerms Adult
Age Factors
Babies
Biomedical and Life Sciences
Biomedicine
Brain
Brain Mapping - methods
Cell Biology
Cerebral Cortex - growth & development
Child Development
Child, Preschool
Female
Gender
Humans
Infant
Infant, Newborn
Linear Models
Magnetic Resonance Imaging
Male
Models, Neurological
Nerve Net - growth & development
Neurology
Neurosciences
Original Article
Retrospective Studies
Sex Factors
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lj9MwEB6xRbvigqBlIVCQV0IcFkUk9SPOCVWIUiGV01aquESx44iVlqTQ9sC_Z8Z50FJtj0ncPDpjzzcPzwfwVqdRHqmyDEVSulCUZUyBJh0WIhImLtIy8lwEi29qvhRfV3LVBtw2bVlltyb6hbqoLcXIP8RoKnmC3pz8uP4VEmsUZVdbCo0zeEity8j5Sla9wxXTvszuQKbas3zEWvFwoiTvUpxR01F0QmVDgvbz4Lp0aKSOkOdxAeV_WVRvnGZP4HGLKtm0UYOn8MBVQxhNK_Sof_5h75iv8_QB9CFcLNp0-hDOv9f-5Ai-7BUPsbpknrqPGeKPYOif-oA3q5qScbaffGDNPkeGikrr9DNYzj7ffJqHLcdCaBGbEBM9gTwn0IpbzWk2S8stgiRpJqpwViVGcpsrExXGEZUV4rMSfbYiFsahOPklDKq6ci-AcbyNKJTIU6uFNiLVNiceJIMYTFphAoi6PzWzbQNy4sG4y_rWyV4OGcohIzlkPIDr_ifrpvvGqcHjTlJZOxE32T-1CeCqv4xTiPIieeXqnR-TUk8bGZ0aQzuChRaTAJ43wu_fCBGSStFyBJAcqEU_gFp4H16pbn_4Vt5CS4QQ-Nz3nQLtvfp9H_ry9Ie-gkeI6mRTKDeGwfb3zr1G5LQ1b_z0-AtyTRET
  priority: 102
  providerName: ProQuest
Title Development of human brain cortical network architecture during infancy
URI https://link.springer.com/article/10.1007/s00429-014-0710-3
https://www.ncbi.nlm.nih.gov/pubmed/24469153
https://www.proquest.com/docview/1658370465
https://www.proquest.com/docview/1659767550
https://www.proquest.com/docview/1664214842
https://pubmed.ncbi.nlm.nih.gov/PMC4850360
Volume 220
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB4VUKVe-oA-AhS5EuqhVZCzHjvOcVstIFARqkDa9hLFjqMiIItg90B_PWPnoV1okTglUiYPO-PxZ8_jA9jWGS-4qqoY08rFWFWJ32jScYkcTVJmFQ9cBD-O1P4pHozluM3jvumi3TuXZLDUfbJbsJ209EWfdEPGYwlWCH5wUu6V4d6vw1FngGWmA59HopWIB0qKzpn5r4csTkcPMObDUMl7_tIwDe2-gpOuAU30yfnObGp27N97tR2f2MLX8LKFpWzY6NEbeObqVVgb1rQkv7xln1kIFA078Kvw_PcknK3B3lzIEZtULBD-MeNZJxitasM2OaubQHM277JgTXYkI_X21v0tnO6OTr7vxy0zQ2wJ0Xj-eg8NHdLcb7XwNkBaYQlaSTNQpbMqNVLYQhleGucJsAjVVbTSKxM0jpRAvIPlelK7D8AEPQZLhUVmNWqDmbaFZ08yhNykRRMB735Qbtuy5Z494yLvCy6Hbsup23LfbbmI4Et_y1VTs-Mx4c3ur-ft8L3JE8JlIuWoZASf-ss08Lw3pajdZBZkMl8JR_LHZHweMWocRPC-UaT-iwhXqYzmmwjSBRXrBXzh78Ur9dmfUAActSTgQe_92unR3Kf_r6HrT5LegBcEDWUTbbcJy9PrmftI8GtqtmApHadb7aCj47fR0fHPO7ImJrc
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIh4XBFsegQJGAg6gCCd-xDkgVAFlS7s9tdKKS4gdRyBBUmgr1D_Fb2TGebBLxd563I03G2fGnm88jw_gqcl5yXVdxzKrfSzrOqGDJhNXkkubVHnNAxfBbF9PD-XHuZqvwe-hFobSKoc9MWzUVevojPxVgqZSZOjNqTdHP2JijaLo6kCh0anFrj_7hS7b8euddyjfZ2m6_f7g7TTuWQVih9aYuNcJ1niJdssZQfqrnHAIC5RNdeWdzqwSrtSWV9YTeRMikhq9lCqR1uMEBN73ElxGw8sphTCbjw5eQnWgwweVm8Aqkhgt4lQrMYRUedfBNKU0JUn1Q7gPLhvFc0j3fMLmP1HbYAy3b8KNHsWyrU7tbsGabyawsdWgB__9jD1nIa80HNhP4OqsD99P4MqnNny5AR8WkpVYW7NAFcgs8VUw9IfDATtruhR1thjsYF1dJcOFQXbhNhxeyNu_A-tN2_h7wATeRlZalrkz0liZG1cS75JFzKectBHw4aUWrm94Trwb34qxVXOQQ4FyKEgOhYjgxfiTo67bx6rBm4Okin7hHxd_1TSCJ-NlXLIUhykb356GMTn10FF81RiqQJZGphHc7YQ_PhEiMp2jpYogW1KLcQC1DF--0nz9ElqHS6MQsuD_vhwUaOHR_zfR-6sn-hiuTQ9me8Xezv7uA7iOiFJ1SXqbsH7y89Q_RNR2Yh-FpcLg80WvzT-SjkwA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIiouCLY8AgWMBBxAUZP4EeeAUEVZWkorDlRacUljxxZIkBTaCvWv8euYcR7sUrG3HnfjzcaZGc83nvF8AE91kVSJ8j4WuXex8D6ljSYd1yIRJq0LnwQugv0DtXMo3s_kbAV-D2dhqKxyWBPDQl23lvbIN1N0lTzHaE5u-r4s4uP29PXxj5gYpCjTOtBpdCqy585_Yfh28mp3G2X9LMumbz-92Yl7hoHYomcmHnaCOE6gD7Oaky5Lyy1CBGkyVTurciO5rZRJauOIyAnRiceIpU6FcTgZjve9Aldzjm4TbSmfjcFeSmdChw-y0IFhJNWKx5mSfEivJl0304xKlgSdJcI1cdFBXkC9F4s3_8ngBsc4vQk3ekTLtjoVvAUrrpnA-laD0fz3c_achRrTsHk_gbX9PpU_gWuf2_DlOrybK1xirWeBNpAZ4q5gGBuHzXbWdOXqbD7xwbozlgyNhHzEbTi8lLd_B1abtnH3gHG8jaiVqAqrhTai0LYiDiaD-E9aYSJIhpda2r75OXFwfCvHts1BDiXKoSQ5lDyCF-NPjrvOH8sGbwySKvtF4KT8q7IRPBkvo_lSTqZqXHsWxhTUT0cmy8bQaWShRRbB3U744xMhOlMFeq0I8gW1GAdQ-_DFK83XL6GNuNAS4Qv-78tBgeYe_X8Tvb98oo9hDa2y_LB7sPcAriO4lF293gasnv48cw8RwJ2aR8FSGBxdtmn-AXIOUDY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+of+human+brain+cortical+network+architecture+during+infancy&rft.jtitle=Brain+structure+%26+function&rft.au=Gao%2C+Wei&rft.au=Alcauter%2C+Sarael&rft.au=Smith%2C+J.+Keith&rft.au=Gilmore%2C+John+H.&rft.date=2015-03-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=1863-2653&rft.eissn=1863-2661&rft.volume=220&rft.issue=2&rft.spage=1173&rft.epage=1186&rft_id=info:doi/10.1007%2Fs00429-014-0710-3&rft.externalDocID=10_1007_s00429_014_0710_3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1863-2653&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1863-2653&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1863-2653&client=summon