Development of human brain cortical network architecture during infancy
The brain’s mature functional network architecture has been extensively studied but the early emergence of the brain’s network organization remains largely unknown. In this study, leveraging a large sample (143 subjects) with longitudinal rsfMRI scans (333 datasets), we aimed to characterize the imp...
Saved in:
Published in | Brain Structure and Function Vol. 220; no. 2; pp. 1173 - 1186 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.03.2015
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1863-2653 1863-2661 1863-2661 0340-2061 |
DOI | 10.1007/s00429-014-0710-3 |
Cover
Loading…
Abstract | The brain’s mature functional network architecture has been extensively studied but the early emergence of the brain’s network organization remains largely unknown. In this study, leveraging a large sample (143 subjects) with longitudinal rsfMRI scans (333 datasets), we aimed to characterize the important developmental process of the brain’s functional network architecture during the first 2 years of life. Based on spatial independent component analysis and longitudinal linear mixed effect modeling, our results unveiled the detailed topology and growth trajectories of nine cortical functional networks. Within networks, our findings clearly separated the brains networks into two categories: primary networks were topologically adult-like in neonates while higher-order networks were topologically incomplete and isolated in neonates but demonstrated consistent synchronization during the first 2 years of life (connectivity increases 0.13–0.35). Between networks, our results demonstrated both network-level connectivity decreases (−0.02 to −0.64) and increases (0.05–0.18) but decreasing connections (
n
= 14) dominated increasing ones (
n
= 5). Finally, significant sex differences were observed with boys demonstrating faster network-level connectivity increases among the two frontoparietal networks (growth rate was 1.63e-4 per day for girls and 2.69e-4 per day for boys,
p
< 1e-4). Overall, our study delineated the development of the whole brain functional architecture during the first 2 years of life featuring significant changes of both within- and between-network interactions. |
---|---|
AbstractList | The brain’s mature functional network architecture has been extensively studied but the early emergence of the brain’s network organization remains largely unknown. In this study, leveraging a large sample (143 subjects) with longitudinal rsfMRI scans (333 datasets), we aimed to characterize the important developmental process of the brain’s functional network architecture during the first two years of life. Based on spatial independent component analysis and longitudinal linear mixed effect modeling, our results unveiled the detailed topology and growth trajectories of nine cortical functional networks. Within networks, our findings clearly separated the brains networks into two categories: primary networks were topologically adult-like in neonates while higher-order networks were topologically incomplete and isolated in neonates but demonstrated consistent synchronization during the first two years of life (connectivity increases 0.13~0.35). Between networks, our results demonstrated both network-level connectivity decreases (−0.02~−0.64) and increases (0.05~0.18) but decreasing connections (n=14) dominated increasing ones (n=5). Finally, significant sex differences were observed with boys demonstrating faster network-level connectivity increases among the two frontoparietal networks (growth rate was 1.63e-4 per day for girls and 2.69e-4 per day for boys, p<1e-4). Overall, our study delineated the development of the whole brain functional architecture during the first two years of life featuring significant changes of both within- and between-network interactions. The brain's mature functional network architecture has been extensively studied but the early emergence of the brain's network organization remains largely unknown. In this study, leveraging a large sample (143 subjects) with longitudinal rsfMRI scans (333 datasets), we aimed to characterize the important developmental process of the brain's functional network architecture during the first 2 years of life. Based on spatial independent component analysis and longitudinal linear mixed effect modeling, our results unveiled the detailed topology and growth trajectories of nine cortical functional networks. Within networks, our findings clearly separated the brains networks into two categories: primary networks were topologically adult-like in neonates while higher-order networks were topologically incomplete and isolated in neonates but demonstrated consistent synchronization during the first 2 years of life (connectivity increases 0.13-0.35). Between networks, our results demonstrated both network-level connectivity decreases (-0.02 to -0.64) and increases (0.05-0.18) but decreasing connections (n = 14) dominated increasing ones (n = 5). Finally, significant sex differences were observed with boys demonstrating faster network-level connectivity increases among the two frontoparietal networks (growth rate was 1.63e-4 per day for girls and 2.69e-4 per day for boys, p < 1e-4). Overall, our study delineated the development of the whole brain functional architecture during the first 2 years of life featuring significant changes of both within- and between-network interactions.The brain's mature functional network architecture has been extensively studied but the early emergence of the brain's network organization remains largely unknown. In this study, leveraging a large sample (143 subjects) with longitudinal rsfMRI scans (333 datasets), we aimed to characterize the important developmental process of the brain's functional network architecture during the first 2 years of life. Based on spatial independent component analysis and longitudinal linear mixed effect modeling, our results unveiled the detailed topology and growth trajectories of nine cortical functional networks. Within networks, our findings clearly separated the brains networks into two categories: primary networks were topologically adult-like in neonates while higher-order networks were topologically incomplete and isolated in neonates but demonstrated consistent synchronization during the first 2 years of life (connectivity increases 0.13-0.35). Between networks, our results demonstrated both network-level connectivity decreases (-0.02 to -0.64) and increases (0.05-0.18) but decreasing connections (n = 14) dominated increasing ones (n = 5). Finally, significant sex differences were observed with boys demonstrating faster network-level connectivity increases among the two frontoparietal networks (growth rate was 1.63e-4 per day for girls and 2.69e-4 per day for boys, p < 1e-4). Overall, our study delineated the development of the whole brain functional architecture during the first 2 years of life featuring significant changes of both within- and between-network interactions. The brain's mature functional network architecture has been extensively studied but the early emergence of the brain's network organization remains largely unknown. In this study, leveraging a large sample (143 subjects) with longitudinal rsfMRI scans (333 datasets), we aimed to characterize the important developmental process of the brain's functional network architecture during the first 2 years of life. Based on spatial independent component analysis and longitudinal linear mixed effect modeling, our results unveiled the detailed topology and growth trajectories of nine cortical functional networks. Within networks, our findings clearly separated the brains networks into two categories: primary networks were topologically adult-like in neonates while higher-order networks were topologically incomplete and isolated in neonates but demonstrated consistent synchronization during the first 2 years of life (connectivity increases 0.13-0.35). Between networks, our results demonstrated both network-level connectivity decreases (-0.02 to -0.64) and increases (0.05-0.18) but decreasing connections (n = 14) dominated increasing ones (n = 5). Finally, significant sex differences were observed with boys demonstrating faster network-level connectivity increases among the two frontoparietal networks (growth rate was 1.63e-4 per day for girls and 2.69e-4 per day for boys, p < 1e-4). Overall, our study delineated the development of the whole brain functional architecture during the first 2 years of life featuring significant changes of both within- and between-network interactions. The brain’s mature functional network architecture has been extensively studied but the early emergence of the brain’s network organization remains largely unknown. In this study, leveraging a large sample (143 subjects) with longitudinal rsfMRI scans (333 datasets), we aimed to characterize the important developmental process of the brain’s functional network architecture during the first 2 years of life. Based on spatial independent component analysis and longitudinal linear mixed effect modeling, our results unveiled the detailed topology and growth trajectories of nine cortical functional networks. Within networks, our findings clearly separated the brains networks into two categories: primary networks were topologically adult-like in neonates while higher-order networks were topologically incomplete and isolated in neonates but demonstrated consistent synchronization during the first 2 years of life (connectivity increases 0.13–0.35). Between networks, our results demonstrated both network-level connectivity decreases (−0.02 to −0.64) and increases (0.05–0.18) but decreasing connections ( n = 14) dominated increasing ones ( n = 5). Finally, significant sex differences were observed with boys demonstrating faster network-level connectivity increases among the two frontoparietal networks (growth rate was 1.63e-4 per day for girls and 2.69e-4 per day for boys, p < 1e-4). Overall, our study delineated the development of the whole brain functional architecture during the first 2 years of life featuring significant changes of both within- and between-network interactions. The brain's mature functional network architecture has been extensively studied but the early emergence of the brain's network organization remains largely unknown. In this study, leveraging a large sample (143 subjects) with longitudinal rsfMRI scans (333 datasets), we aimed to characterize the important developmental process of the brain's functional network architecture during the first 2 years of life. Based on spatial independent component analysis and longitudinal linear mixed effect modeling, our results unveiled the detailed topology and growth trajectories of nine cortical functional networks. Within networks, our findings clearly separated the brains networks into two categories: primary networks were topologically adult-like in neonates while higher-order networks were topologically incomplete and isolated in neonates but demonstrated consistent synchronization during the first 2 years of life (connectivity increases 0.13-0.35). Between networks, our results demonstrated both network-level connectivity decreases (-0.02 to -0.64) and increases (0.05-0.18) but decreasing connections (n = 14) dominated increasing ones (n = 5). Finally, significant sex differences were observed with boys demonstrating faster network-level connectivity increases among the two frontoparietal networks (growth rate was 1.63e-4 per day for girls and 2.69e-4 per day for boys, p < 1e-4). Overall, our study delineated the development of the whole brain functional architecture during the first 2 years of life featuring significant changes of both within- and between-network interactions. |
Author | Gilmore, John H. Smith, J. Keith Lin, Weili Gao, Wei Alcauter, Sarael |
AuthorAffiliation | 1 Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, N.C., U.S.A 3 Department of Psychiatry, University of North Carolina at Chapel Hill, N.C., U.S.A 2 Department of Radiology, University of North Carolina at Chapel Hill, N.C., U.S.A |
AuthorAffiliation_xml | – name: 3 Department of Psychiatry, University of North Carolina at Chapel Hill, N.C., U.S.A – name: 1 Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, N.C., U.S.A – name: 2 Department of Radiology, University of North Carolina at Chapel Hill, N.C., U.S.A |
Author_xml | – sequence: 1 givenname: Wei surname: Gao fullname: Gao, Wei email: wgao@email.unc.edu organization: Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill – sequence: 2 givenname: Sarael surname: Alcauter fullname: Alcauter, Sarael organization: Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill – sequence: 3 givenname: J. Keith surname: Smith fullname: Smith, J. Keith organization: Department of Radiology, University of North Carolina at Chapel Hill – sequence: 4 givenname: John H. surname: Gilmore fullname: Gilmore, John H. organization: Department of Psychiatry, University of North Carolina at Chapel Hill – sequence: 5 givenname: Weili surname: Lin fullname: Lin, Weili organization: Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24469153$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkU9rFTEUxYNUbPv0A7iRATduRu_Nv8lsBKm2FQpudB0ymUxf6kzyTDIt_fbO8NpSC4qrG7jnHM7N75gchBgcIa8R3iNA8yEDcNrWgLyGBqFmz8gRKslqKiUePLwFOyTHOV8BiFZh-4IcUs5li4IdkbPP7tqNcTe5UKo4VNt5MqHqkvGhsjEVb81YBVduYvpZmWS3vjhb5uSqfk4-XFY-DCbY25fk-WDG7F7dzQ35cfrl-8l5ffHt7OvJp4vaStaWGhkAto4LilYxrhQIy6zkXHRU9s7KphPMGtlB37mGKkCkQ0t5j7xzwDu2IR_3ubu5m1xvl9rJjHqX_GTSrY7G6z83wW_1ZbzWXAlgEpaAd3cBKf6aXS568tm6cTTBxTlrlJJT5IrT_5CKtpGNEGvq2yfSqzinsPzEqlKsAb5g2JA3j8s_tL7HsQiavcCmmHNyg7a-mOLjeosfNYJewes9eL2A1yt4vTrxifM-_F8euvfk3YrSpUel_2r6Dc4Fvmg |
CitedBy_id | crossref_primary_10_1007_s10877_024_01250_2 crossref_primary_10_1093_cercor_bhy302 crossref_primary_10_3389_fnins_2021_810833 crossref_primary_10_7554_eLife_75401 crossref_primary_10_1093_cercor_bhae351 crossref_primary_10_1162_imag_a_00403 crossref_primary_10_1111_jcpp_12409 crossref_primary_10_1176_appi_ajp_21111176 crossref_primary_10_1016_j_alcohol_2017_10_007 crossref_primary_10_3389_fnhum_2015_00601 crossref_primary_10_1016_j_neubiorev_2017_05_020 crossref_primary_10_1016_j_neuroimage_2018_07_004 crossref_primary_10_1093_cercor_bhab408 crossref_primary_10_1038_s41598_022_11184_x crossref_primary_10_1016_j_bbr_2020_113016 crossref_primary_10_1016_j_bandl_2017_07_007 crossref_primary_10_1523_JNEUROSCI_0779_20_2020 crossref_primary_10_1053_j_sult_2021_07_007 crossref_primary_10_21661_r_554291 crossref_primary_10_1016_j_cortex_2018_08_013 crossref_primary_10_1093_cercor_bhx205 crossref_primary_10_3389_fnins_2022_952355 crossref_primary_10_1007_s00429_022_02477_y crossref_primary_10_1093_cercor_bhz066 crossref_primary_10_1111_desc_12928 crossref_primary_10_1111_ejn_15882 crossref_primary_10_1007_s11571_016_9419_8 crossref_primary_10_1371_journal_pone_0311666 crossref_primary_10_1177_197140091402700505 crossref_primary_10_1093_schbul_sbz053 crossref_primary_10_1097_SCS_0000000000007505 crossref_primary_10_3390_jpm11090854 crossref_primary_10_1523_JNEUROSCI_2891_18_2019 crossref_primary_10_1093_cercor_bhad288 crossref_primary_10_1177_1073858420921378 crossref_primary_10_1162_imag_a_00504 crossref_primary_10_1016_j_dcn_2020_100906 crossref_primary_10_1093_cercor_bhw269 crossref_primary_10_1186_s11689_020_09310_9 crossref_primary_10_1177_1073858416635986 crossref_primary_10_1016_j_nicl_2022_102962 crossref_primary_10_1093_cercor_bhu088 crossref_primary_10_1016_j_bpsc_2022_09_005 crossref_primary_10_1080_0952813X_2018_1544285 crossref_primary_10_1016_j_dcn_2022_101123 crossref_primary_10_1016_j_dcn_2025_101527 crossref_primary_10_1016_j_bpsc_2018_08_010 crossref_primary_10_1093_cercor_bhaa340 crossref_primary_10_1016_j_dcn_2015_10_002 crossref_primary_10_3389_fnins_2017_00233 crossref_primary_10_1093_brain_awab118 crossref_primary_10_1007_s00247_023_05794_4 crossref_primary_10_1093_cercor_bhx217 crossref_primary_10_1162_imag_a_00512 crossref_primary_10_1146_annurev_devpsych_121318_085124 crossref_primary_10_1038_s41398_023_02427_0 crossref_primary_10_1016_j_cortex_2020_10_022 crossref_primary_10_1016_j_siny_2024_101561 crossref_primary_10_1093_cercor_bhab041 crossref_primary_10_3389_fpsyt_2021_685754 crossref_primary_10_3390_philosophies3040029 crossref_primary_10_1016_j_nicl_2018_02_002 crossref_primary_10_3390_nu12072090 crossref_primary_10_1002_hbm_24541 crossref_primary_10_1111_desc_12613 crossref_primary_10_1016_j_neuroimage_2017_11_027 crossref_primary_10_1016_j_seizure_2024_02_021 crossref_primary_10_3389_fnins_2020_00476 crossref_primary_10_1016_j_neuroimage_2018_07_041 crossref_primary_10_1016_j_neuroimage_2020_117303 crossref_primary_10_1016_j_biopsych_2023_03_004 crossref_primary_10_1002_hbm_26718 crossref_primary_10_1016_j_dcn_2020_100850 crossref_primary_10_1038_s42003_024_06016_9 crossref_primary_10_1016_j_biopsych_2022_07_024 crossref_primary_10_1080_19012276_2023_2173275 crossref_primary_10_1109_JSEN_2024_3393299 crossref_primary_10_3389_fnins_2017_00685 crossref_primary_10_1162_imag_a_00165 crossref_primary_10_3389_fnhum_2022_853816 crossref_primary_10_1016_j_dcn_2020_100855 crossref_primary_10_1002_dneu_22701 crossref_primary_10_1016_j_neuroimage_2024_120660 crossref_primary_10_3758_s13423_018_1459_0 crossref_primary_10_1038_s41598_017_17610_9 crossref_primary_10_1002_jnr_24669 crossref_primary_10_1371_journal_pbio_3002653 crossref_primary_10_1016_j_neuroimage_2020_116688 crossref_primary_10_1016_j_semperi_2021_151473 crossref_primary_10_1016_j_bbi_2020_11_003 crossref_primary_10_1073_pnas_2002645117 crossref_primary_10_1093_cercor_bhae204 crossref_primary_10_3389_fpsyg_2023_1168739 crossref_primary_10_3389_fpsyt_2019_00122 crossref_primary_10_3389_fped_2015_00042 crossref_primary_10_31887_DCNS_2018_20_2_smarek crossref_primary_10_3389_fnins_2024_1467446 crossref_primary_10_1162_imag_a_00145 crossref_primary_10_1038_s41380_024_02802_3 crossref_primary_10_1093_cercor_bhaa410 crossref_primary_10_1111_jcpp_13268 crossref_primary_10_1016_j_neuroscience_2017_01_031 crossref_primary_10_1016_j_dcn_2017_02_010 crossref_primary_10_1111_desc_12703 crossref_primary_10_1007_s00381_016_3069_3 crossref_primary_10_1016_j_neuroimage_2023_120342 crossref_primary_10_1523_JNEUROSCI_1209_24_2025 crossref_primary_10_1016_j_jad_2020_12_157 crossref_primary_10_1016_j_neuroscience_2017_05_011 crossref_primary_10_1016_j_neuroimage_2020_117630 crossref_primary_10_1016_j_dcn_2023_101235 crossref_primary_10_1515_revneuro_2022_0017 crossref_primary_10_31857_S0044467724010016 crossref_primary_10_1002_hbm_24308 crossref_primary_10_1016_j_nicl_2019_102083 crossref_primary_10_1038_s41598_022_20617_6 crossref_primary_10_1126_scitranslmed_aag2882 crossref_primary_10_1007_s00213_018_5161_8 crossref_primary_10_1016_j_neuroimage_2018_06_038 crossref_primary_10_1093_cercor_bhy028 crossref_primary_10_1089_brain_2019_0669 crossref_primary_10_1096_fj_201701290RR crossref_primary_10_1016_j_dcn_2019_100632 crossref_primary_10_1073_pnas_1907892117 crossref_primary_10_1016_j_neuroimage_2018_10_019 crossref_primary_10_1002_hbm_24974 crossref_primary_10_1016_j_dcn_2020_100893 crossref_primary_10_1016_j_neuroimage_2019_116073 crossref_primary_10_1007_s00429_023_02681_4 crossref_primary_10_3389_fnhum_2020_497245 crossref_primary_10_1371_journal_pbio_3002909 crossref_primary_10_1093_cercor_bhac340 crossref_primary_10_1002_dneu_22742 crossref_primary_10_1016_j_cortex_2021_02_005 crossref_primary_10_1016_j_biopsych_2024_04_001 crossref_primary_10_1016_j_infbeh_2024_101980 crossref_primary_10_1097_SCS_0000000000005288 crossref_primary_10_1073_pnas_2414636122 crossref_primary_10_1002_pne2_70001 crossref_primary_10_1038_s41598_021_81207_6 crossref_primary_10_1016_j_neuroimage_2021_118562 crossref_primary_10_1093_cercor_bhac225 crossref_primary_10_1002_hbm_23552 crossref_primary_10_1038_s41467_023_44050_z crossref_primary_10_1093_cercor_bhaa170 crossref_primary_10_1016_j_neuroimage_2017_01_079 crossref_primary_10_1038_s41562_018_0384_6 crossref_primary_10_1038_s41386_021_01066_7 crossref_primary_10_1016_j_biopsych_2021_03_026 crossref_primary_10_1016_j_dcn_2021_101007 crossref_primary_10_1016_j_tins_2017_06_003 crossref_primary_10_1007_s11055_024_01649_z crossref_primary_10_1097_WNP_0000000000000772 crossref_primary_10_1016_j_tics_2017_05_002 crossref_primary_10_1093_sleep_zsae225 crossref_primary_10_1016_j_neuroimage_2018_07_057 crossref_primary_10_1088_1741_2552_acbb2d crossref_primary_10_1038_s41593_018_0128_y crossref_primary_10_2196_34854 crossref_primary_10_1016_j_psyneuen_2022_105896 crossref_primary_10_1016_j_tins_2021_01_008 crossref_primary_10_1523_JNEUROSCI_3980_15_2016 crossref_primary_10_1007_s40474_019_00163_z crossref_primary_10_1016_j_neuroimage_2019_01_025 crossref_primary_10_1371_journal_pbio_1002260 crossref_primary_10_1103_PhysRevE_105_024304 crossref_primary_10_3389_fnins_2021_666020 crossref_primary_10_1016_j_dcn_2018_02_001 crossref_primary_10_1111_nyas_13036 crossref_primary_10_1177_08830738241282037 crossref_primary_10_1089_brain_2018_0625 crossref_primary_10_3389_fpsyg_2018_01968 crossref_primary_10_1523_JNEUROSCI_4333_14_2015 crossref_primary_10_3389_fpsyt_2020_531571 crossref_primary_10_1016_j_dcn_2025_101549 crossref_primary_10_1162_imag_a_00201 crossref_primary_10_1097_SCS_0000000000005537 crossref_primary_10_1016_j_neubiorev_2021_09_001 crossref_primary_10_1016_j_tins_2023_07_007 crossref_primary_10_1016_j_cortex_2022_06_009 crossref_primary_10_1016_j_dcn_2024_101397 crossref_primary_10_1038_s41598_021_98574_9 crossref_primary_10_3390_brainsci11121652 crossref_primary_10_1016_j_dr_2018_02_003 crossref_primary_10_1177_01650254241312136 crossref_primary_10_1063_1_5086809 crossref_primary_10_1016_j_dcn_2019_100706 crossref_primary_10_1016_j_neuroimage_2018_02_066 crossref_primary_10_1017_S1355617720000399 crossref_primary_10_1093_cercor_bhaa128 crossref_primary_10_1002_hbm_70021 crossref_primary_10_1017_S0007114516004281 crossref_primary_10_1523_JNEUROSCI_5072_13_2014 crossref_primary_10_1111_jcpp_13555 crossref_primary_10_1016_j_neuroimage_2022_119101 crossref_primary_10_1016_j_nic_2019_09_009 crossref_primary_10_1038_s41467_024_52242_4 crossref_primary_10_1093_cercor_bhx313 crossref_primary_10_1016_j_neuroimage_2021_117769 crossref_primary_10_1088_1741_2552_abfd46 crossref_primary_10_1152_jn_00362_2020 crossref_primary_10_1016_j_jaacop_2024_09_008 crossref_primary_10_1016_j_neuroimage_2024_120806 crossref_primary_10_7759_cureus_18721 crossref_primary_10_1016_j_neuroimage_2018_12_043 crossref_primary_10_1016_j_dcn_2021_100991 crossref_primary_10_1016_j_neuroimage_2021_118298 crossref_primary_10_1523_JNEUROSCI_2363_23_2024 crossref_primary_10_1016_j_dcn_2021_100976 crossref_primary_10_1093_cercor_bhab230 crossref_primary_10_1093_braincomms_fcac071 crossref_primary_10_1038_nrn_2018_1 crossref_primary_10_1016_j_dcn_2024_101496 crossref_primary_10_1016_j_dcn_2025_101551 crossref_primary_10_1093_cercor_bhac209 crossref_primary_10_1016_j_neuroimage_2017_04_059 crossref_primary_10_3174_ajnr_A5887 crossref_primary_10_1515_revneuro_2016_0007 crossref_primary_10_1523_JNEUROSCI_0480_21_2021 crossref_primary_10_1093_cercor_bhac321 crossref_primary_10_1093_braincomms_fcad288 |
Cites_doi | 10.1038/npp.2009.115 10.1073/pnas.0601417103 10.1093/cercor/bhn117 10.1152/jn.00339.2011 10.1016/j.neuroimage.2013.08.048 10.3174/ajnr.A1256 10.1371/journal.pone.0018746 10.1016/j.neuroimage.2012.03.017 10.1162/jocn.1997.9.5.648 10.1016/j.neuroimage.2011.12.063 10.1016/j.biopsych.2010.10.029 10.1016/j.neuron.2010.08.017 10.2307/1130325 10.2190/H7E1-XMM7-GU9B-3HWR 10.1016/j.neuroimage.2003.12.015 10.1093/bioinformatics/btl205 10.1037/a0014722 10.1037/a0012975 10.1002/hbm.21252 10.1016/S0163-6383(79)80019-3 10.1111/1467-8624.00120 10.1002/hbm.20160 10.1196/annals.1440.011 10.1073/pnas.98.2.676 10.1002/hbm.21333 10.1152/jn.90463.2008 10.1016/j.biopsych.2010.07.003 10.1016/0167-8760(94)00081-O 10.1016/j.neuroimage.2009.05.012 10.1371/journal.pcbi.1000381 10.1073/pnas.071043098 10.1016/j.neuroimage.2010.06.016 10.1371/journal.pbio.1000157 10.1016/j.neuroimage.2012.08.052 10.1016/j.neuron.2007.10.038 10.1073/pnas.0504136102 10.3389/fnsys.2013.00034 10.1152/jn.90355.2008 10.1073/pnas.0704380104 10.1073/pnas.1204185109 10.1038/nrn755 10.1002/mrm.1910340409 10.1523/JNEUROSCI.5587-06.2007 10.1073/pnas.0905267106 10.1016/j.neuroimage.2005.09.065 10.1002/hbm.1048 10.1016/j.neuroimage.2004.07.051 10.1002/hbm.21204 10.1073/pnas.0800376105 10.1098/rstb.1998.0344 10.1097/PSY.0b013e318273bf33 10.1016/j.neuroimage.2011.10.018 10.1073/pnas.0308627101 10.1152/jn.00338.2011 10.1371/journal.pone.0036356 10.1038/jcbfm.1993.4 10.1073/pnas.0811221106 10.1073/pnas.1007921107 10.1016/j.biopsych.2010.06.029 10.1371/journal.pone.0025278 10.1016/j.cortex.2013.10.012 |
ContentType | Journal Article |
Copyright | Springer-Verlag Berlin Heidelberg 2014 Springer-Verlag Berlin Heidelberg 2015 |
Copyright_xml | – notice: Springer-Verlag Berlin Heidelberg 2014 – notice: Springer-Verlag Berlin Heidelberg 2015 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7RV 7TK 7X7 7XB 88A 88E 88G 8AO 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. KB0 LK8 M0S M1P M2M M7P NAPCQ PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ Q9U 7X8 5PM |
DOI | 10.1007/s00429-014-0710-3 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Nursing & Allied Health Database Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Psychology Database (Alumni) ProQuest Pharma Collection ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central ProQuest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) Biological Sciences ProQuest Health & Medical Collection Medical Database Psychology Database Biological Science Database Nursing & Allied Health Premium ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Psychology ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Nursing & Allied Health Source ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest Medical Library ProQuest Psychology Journals ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic ProQuest One Psychology MEDLINE Neurosciences Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Zoology Medicine |
EISSN | 1863-2661 0340-2061 |
EndPage | 1186 |
ExternalDocumentID | PMC4850360 3605241221 24469153 10_1007_s00429_014_0710_3 |
Genre | Journal Article Comparative Study Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NINDS NIH HHS grantid: R01NS055754 – fundername: NIMH NIH HHS grantid: U01 MH070890 – fundername: NICHD NIH HHS grantid: R01 HD053000 – fundername: NIMH NIH HHS grantid: P50 MH064065 – fundername: NIMH NIH HHS grantid: R01MH070890-09A1 – fundername: NIMH NIH HHS grantid: R01 MH070890 – fundername: NINDS NIH HHS grantid: R01 NS055754 – fundername: NIMH NIH HHS grantid: R01 MH060352 |
GroupedDBID | --- -56 -5G -BR -EM -Y2 -~C .86 .VR 06C 06D 0R~ 0VY 1N0 1SB 203 23N 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 36B 3V. 4.4 406 408 409 40D 40E 53G 5GY 5VS 67Z 6J9 6NX 78A 7RV 7X7 88A 88E 8AO 8FE 8FH 8FI 8FJ 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABIVO ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABPLI ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACREN ACZOJ ADBBV ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADYPR ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHMBA AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARMRJ AXYYD AZFZN AZQEC B-. BA0 BBNVY BDATZ BENPR BGNMA BHPHI BKEYQ BPHCQ BSONS BVXVI CAG CCPQU COF CS3 CSCUP DDRTE DNIVK DPUIP DU5 DWQXO EBD EBLON EBS EIOEI EJD EMB EMOBN EN4 ESBYG EX3 F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KPH LAS LK8 LLZTM M0L M1P M2M M4Y M7P MA- N2Q N9A NAPCQ NB0 NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P9S PF- PQQKQ PROAC PSQYO PSYQQ PT4 Q2X QOR QOS R89 R9I ROL RPX RSV S16 S1Z S27 S37 S3B SAP SBL SCLPG SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZN T13 TEORI TSG TSK TSV TT1 TUC U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WJK WK8 WOW YLTOR Z45 Z7U Z82 Z83 Z87 Z8V Z8W Z91 ZMTXR ZOVNA ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM 7TK 7XB 8FK ABRTQ K9. PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS Q9U 7X8 5PM |
ID | FETCH-LOGICAL-c639t-130019e4521c8348805c3c6445b26dec67b53ca6b0dbe7280112f924d14be04b3 |
IEDL.DBID | AGYKE |
ISSN | 1863-2653 1863-2661 |
IngestDate | Thu Aug 21 18:43:20 EDT 2025 Thu Jul 10 17:09:39 EDT 2025 Fri Jul 11 05:36:08 EDT 2025 Fri Jul 25 19:24:54 EDT 2025 Thu Apr 03 07:04:41 EDT 2025 Thu Apr 24 22:56:35 EDT 2025 Tue Jul 01 00:38:10 EDT 2025 Fri Feb 21 02:35:24 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Early brain development Sex effect Resting state Brain functional organization Functional network |
Language | English |
License | http://www.springer.com/tdm |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c639t-130019e4521c8348805c3c6445b26dec67b53ca6b0dbe7280112f924d14be04b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/4850360 |
PMID | 24469153 |
PQID | 1658370465 |
PQPubID | 38983 |
PageCount | 14 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4850360 proquest_miscellaneous_1664214842 proquest_miscellaneous_1659767550 proquest_journals_1658370465 pubmed_primary_24469153 crossref_citationtrail_10_1007_s00429_014_0710_3 crossref_primary_10_1007_s00429_014_0710_3 springer_journals_10_1007_s00429_014_0710_3 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-03-01 |
PublicationDateYYYYMMDD | 2015-03-01 |
PublicationDate_xml | – month: 03 year: 2015 text: 2015-03-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Germany – name: Heidelberg |
PublicationTitle | Brain Structure and Function |
PublicationTitleAbbrev | Brain Struct Funct |
PublicationTitleAlternate | Brain Struct Funct |
PublicationYear | 2015 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | Sripada, King, Welsh, Garfinkel, Wang, Sripada, Liberzon (CR66) 2012; 74 Tau, Peterson (CR69) 2010; 35 Doria, Beckmann, Arichi, Merchant, Groppo, Turkheimer, Counsell, Murgasova, Aljabar, Nunes, Larkman, Rees, Edwards (CR17) 2011; 107 Raichle, MacLeod, Snyder, Powers, Gusnard, Shulman (CR52) 2001; 98 Smith, Fox, Miller, Glahn, Fox, Mackay, Filippini, Watkins, Toro, Laird, Beckmann (CR63) 2009; 106 Kelly, Di Martino, Uddin, Shehzad, Gee, Reiss, Margulies, Castellanos, Milham (CR41) 2009; 19 Tomasi, Volkow (CR70) 2012; 33 Biswal, Yetkin, Haughton, Hyde (CR4) 1995; 34 Lin, Zhu, Gao, Chen, Toh, Styner, Gerig, Smith, Biswal, Gilmore (CR44) 2008; 29 Andrews-Hanna, Snyder, Vincent, Lustig, Head, Raichle, Buckner (CR3) 2007; 56 Vincent, Kahn, Snyder, Raichle, Buckner (CR71) 2008; 100 Power, Fair, Schlaggar, Petersen (CR46) 2010; 67 Fair, Posner, Nagel, Bathula, Dias, Mills, Blythe, Giwa, Schmitt, Nigg (CR22) 2010; 68 Kail (CR40) 1993 Power, Barnes, Snyder, Schlaggar, Petersen (CR49) 2013; 76 Kilpatrick, Zald, Pardo, Cahill (CR42) 2006; 30 Fornito, Harrison, Zalesky, Simons (CR24) 2012; 109 Greicius, Srivastava, Reiss, Menon (CR35) 2004; 101 Wang, Zuo, Dai, Xia, Zhao, Zhao, Jia, Han, He (CR72) 2012 Amsterdam (CR2) 1972; 5 Gao, Gilmore, Giovanello, Smith, Shen, Zhu, Lin (CR30) 2011; 6 Harman, Rothbart, Posner (CR38) 1997; 21 Smith, Jenkinson, Woolrich, Beckmann, Behrens, Johansen-Berg, Bannister, De Luca, Drobnjak, Flitney, Niazy, Saunders, Vickers, Zhang, De Stefano, Brady, Matthews (CR62) 2004; 23 Posner, Rothbart (CR45) 1998; 353 Craddock, James, Holtzheimer, Hu, Mayberg (CR13) 2012; 33 Johnson (CR39) 2000; 71 Corbetta, Shulman (CR12) 2002; 3 Gusnard, Akbudak, Shulman, Raichle (CR36) 2001; 98 Spreng, Stevens, Chamberlain, Gilmore, Schacter (CR65) 2010; 53 Dickstein, Gorrostieta, Ombao, Goldberg, Brazel, Gable, Kelly, Gee, Zuo, Castellanos, Milham (CR16) 2010; 68 Gao, Gilmore, Shen, Smith, Zhu, Lin (CR31) 2012 Conboy, Sommerville, Kuhl (CR11) 2008; 44 Kostovic, Judas, Petanjek, Simic (CR43) 1995; 19 Power, Barnes, Snyder, Schlaggar, Petersen (CR48) 2012 Gao, Gilmore, Alcauter, Lin (CR32) 2013; 7 Rothbart, Posner (CR55) 2001 Field (CR23) 1979; 2 Stern, Fitzgerald, Welsh, Abelson, Taylor (CR67) 2012; 7 Rombouts, Barkhof, Goekoop, Stam, Scheltens (CR53) 2005; 26 Rothbart (CR54) 1990 Seeley, Menon, Schatzberg, Keller, Glover, Kenna, Reiss, Greicius (CR58) 2007; 27 Busch (CR7) 1995; 12 CR19 Friston, Frith, Liddle, Frackowiak (CR27) 1993; 13 Fair, Cohen, Dosenbach, Church, Miezin, Barch, Raichle, Petersen, Schlaggar (CR20) 2008; 105 Gao, Zhu, Giovanello, Smith, Shen, Gilmore, Lin (CR29) 2009; 106 Haith, Hazan, Goodman (CR37) 1988; 59 Supekar, Musen, Menon (CR68) 2009; 7 Ebbels, Buxton, Jones (CR18) 2006; 22 Prechtl (CR51) 1989 Shulman, Fiez, Corbetta, Buckner, Miezin (CR61) 1997; 9 Gao, Lin (CR28) 2012; 33 Smyser, Inder, Shimony, Hill, Degnan, Snyder, Neil (CR64) 2010 Gaulin (CR33) 1993 Calhoun, Adali, Pearlson, Pekar (CR8) 2001; 14 Chang, Glover (CR10) 2009; 47 Gilmore, Shi, Woolson, Knickmeyer, Short, Lin, Zhu, Hamer, Styner, Shen (CR34) 2012 Satterthwaite, Wolf, Loughead, Ruparel, Elliott, Hakonarson, Gur, Gur (CR56) 2012; 60 Shen, Davatzikos (CR59) 2004; 21 Fransson, Skiold, Horsch, Nordell, Blennow, Lagercrantz, Aden (CR26) 2007; 104 Power, Barnes, Snyder, Schlaggar, Petersen (CR47) 2012; 59 Zhang, Snyder, Fox, Sansbury, Shimony, Raichle (CR74) 2008; 100 Fox, Snyder, Vincent, Corbetta, Van Essen, Raichle (CR25) 2005; 102 Damoiseaux, Rombouts, Barkhof, Scheltens, Stam, Smith, Beckmann (CR14) 2006; 103 Buckner, Krienen, Castellanos, Diaz, Yeo (CR6) 2011; 106 Chai, Jacobs (CR9) 2009; 123 Yeo, Krienen, Sepulcre, Sabuncu, Lashkari, Hollinshead, Roffman, Smoller, Zollei, Polimeni, Fischl, Liu, Buckner (CR73) 2011; 106 Fair, Cohen, Power, Dosenbach, Church, Miezin, Schlaggar, Petersen (CR21) 2009; 5 Alcauter, Lin, Smith, Gilmore, Gao (CR1) 2013 Di Martino, Kelly, Grzadzinski, Zuo, Mennes, Mairena, Lord, Castellanos, Milham (CR15) 2010; 69 Power, Mitra, Laumann, Snyder, Schlaggar, Petersen (CR50) 2014; 84 Buckner, Andrews-Hanna, Schacter (CR5) 2008; 1124 Satterthwaite, Elliott, Gerraty, Ruparel, Loughead, Calkins, Eickhoff, Hakonarson, Gur, Gur, Wolf (CR57) 2013; 64 Shi, Yap, Wu, Jia, Gilmore, Lin, Shen (CR60) 2011; 6 JD Power (710_CR46) 2010; 67 MK Rothbart (710_CR54) 1990 RN Spreng (710_CR65) 2010; 53 JD Power (710_CR48) 2012 SM Smith (710_CR62) 2004; 23 DP Dickstein (710_CR16) 2010; 68 JD Power (710_CR49) 2013; 76 W Lin (710_CR44) 2008; 29 XJ Chai (710_CR9) 2009; 123 BT Conboy (710_CR11) 2008; 44 JD Power (710_CR50) 2014; 84 VD Calhoun (710_CR8) 2001; 14 TD Satterthwaite (710_CR57) 2013; 64 ER Stern (710_CR67) 2012; 7 TM Ebbels (710_CR18) 2006; 22 J Wang (710_CR72) 2012 LA Kilpatrick (710_CR42) 2006; 30 MD Greicius (710_CR35) 2004; 101 W Gao (710_CR30) 2011; 6 KJ Friston (710_CR27) 1993; 13 RL Buckner (710_CR5) 2008; 1124 F Shi (710_CR60) 2011; 6 B Amsterdam (710_CR2) 1972; 5 WW Seeley (710_CR58) 2007; 27 AM Kelly (710_CR41) 2009; 19 C Harman (710_CR38) 1997; 21 A Fornito (710_CR24) 2012; 109 W Gao (710_CR31) 2012 MH Johnson (710_CR39) 2000; 71 SM Smith (710_CR63) 2009; 106 M Kail (710_CR40) 1993 T Field (710_CR23) 1979; 2 MK Rothbart (710_CR55) 2001 T Busch (710_CR7) 1995; 12 V Doria (710_CR17) 2011; 107 D Tomasi (710_CR70) 2012; 33 DA Fair (710_CR21) 2009; 5 K Supekar (710_CR68) 2009; 7 DA Fair (710_CR20) 2008; 105 G Shulman (710_CR61) 1997; 9 B Biswal (710_CR4) 1995; 34 W Gao (710_CR28) 2012; 33 D Shen (710_CR59) 2004; 21 D Zhang (710_CR74) 2008; 100 CD Smyser (710_CR64) 2010 JS Damoiseaux (710_CR14) 2006; 103 S Alcauter (710_CR1) 2013 710_CR19 W Gao (710_CR32) 2013; 7 M Corbetta (710_CR12) 2002; 3 JD Power (710_CR47) 2012; 59 S Gaulin (710_CR33) 1993 HFR Prechtl (710_CR51) 1989 JR Andrews-Hanna (710_CR3) 2007; 56 DA Fair (710_CR22) 2010; 68 JL Vincent (710_CR71) 2008; 100 DA Gusnard (710_CR36) 2001; 98 RK Sripada (710_CR66) 2012; 74 A Martino Di (710_CR15) 2010; 69 I Kostovic (710_CR43) 1995; 19 TD Satterthwaite (710_CR56) 2012; 60 W Gao (710_CR29) 2009; 106 SA Rombouts (710_CR53) 2005; 26 BT Yeo (710_CR73) 2011; 106 P Fransson (710_CR26) 2007; 104 C Chang (710_CR10) 2009; 47 MM Haith (710_CR37) 1988; 59 RC Craddock (710_CR13) 2012; 33 JH Gilmore (710_CR34) 2012 MD Fox (710_CR25) 2005; 102 MI Posner (710_CR45) 1998; 353 ME Raichle (710_CR52) 2001; 98 GZ Tau (710_CR69) 2010; 35 RL Buckner (710_CR6) 2011; 106 21533194 - PLoS One. 2011 Apr 14;6(4):e18746 19620724 - Proc Natl Acad Sci U S A. 2009 Aug 4;106(31):13040-5 19794405 - Neuropsychopharmacology. 2010 Jan;35(1):147-68 22570705 - PLoS One. 2012;7(5):e36356 22440651 - Neuroimage. 2013 Aug 1;76:439-41 22368080 - Cereb Cortex. 2013 Mar;23(3):594-603 20728873 - Biol Psychiatry. 2010 Dec 15;68(12):1084-91 17329432 - J Neurosci. 2007 Feb 28;27(9):2349-56 15501092 - Neuroimage. 2004;23 Suppl 1:S208-19 19446646 - Neuroimage. 2009 Oct 1;47(4):1448-59 15954139 - Hum Brain Mapp. 2005 Dec;26(4):231-9 20600998 - Neuroimage. 2010 Oct 15;53(1):303-17 8417010 - J Cereb Blood Flow Metab. 1993 Jan;13(1):5-14 4679817 - Dev Psychobiol. 1972;5(4):297-305 23898240 - Front Syst Neurosci. 2013 Jul 26;7:34 18799601 - J Neurophysiol. 2008 Dec;100(6):3328-42 22926292 - Neuroimage. 2013 Jan 1;64:240-56 18322013 - Proc Natl Acad Sci U S A. 2008 Mar 11;105(10):4028-32 8524021 - Magn Reson Med. 1995 Oct;34(4):537-41 16945915 - Proc Natl Acad Sci U S A. 2006 Sep 12;103(37):13848-53 7622411 - Int J Psychophysiol. 1995 Mar;19(2):85-102 24248433 - Cereb Cortex. 2015 May;25(5):1176-87 19331451 - Behav Neurosci. 2009 Apr;123(2):276-83 24315034 - Cortex. 2014 Feb;51:56-66 15070770 - Proc Natl Acad Sci U S A. 2004 Mar 30;101(13):4637-42 21769991 - Hum Brain Mapp. 2012 Aug;33(8):1914-28 21795627 - J Neurophysiol. 2011 Nov;106(5):2322-45 16326115 - Neuroimage. 2006 Apr 1;30(2):452-61 21425398 - Hum Brain Mapp. 2012 Apr;33(4):849-60 15976020 - Proc Natl Acad Sci U S A. 2005 Jul 5;102(27):9673-8 22807481 - Proc Natl Acad Sci U S A. 2012 Jul 31;109(31):12788-93 19351894 - Proc Natl Acad Sci U S A. 2009 Apr 21;106(16):6790-5 21041625 - Proc Natl Acad Sci U S A. 2010 Nov 16;107(46):20015-20 23965122 - J Cogn Neurosci. 1997 Fall;9(5):648-63 9854264 - Philos Trans R Soc Lond B Biol Sci. 1998 Nov 29;353(1377):1915-27 23994314 - Neuroimage. 2014 Jan 1;84:320-41 22233733 - Neuroimage. 2012 Mar;60(1):623-32 20739018 - Biol Psychiatry. 2010 Nov 1;68(9):839-46 11559959 - Hum Brain Mapp. 2001 Nov;14(3):140-51 22109543 - Cereb Cortex. 2012 Nov;22(11):2478-85 18784212 - AJNR Am J Neuroradiol. 2008 Nov;29(10):1883-9 18793082 - Dev Psychol. 2008 Sep;44(5):1505-12 18400922 - Ann N Y Acad Sci. 2008 Mar;1124:1-38 11209064 - Proc Natl Acad Sci U S A. 2001 Jan 16;98 (2):676-82 22019881 - Neuroimage. 2012 Feb 1;59(3):2142-54 20826306 - Neuron. 2010 Sep 9;67(5):735-48 18054866 - Neuron. 2007 Dec 6;56(5):924-35 22537793 - Biol Psychiatry. 2013 Mar 1;73(5):472-81 19621066 - PLoS Biol. 2009 Jul;7(7):e1000157 21966479 - PLoS One. 2011;6(9):e25278 17878310 - Proc Natl Acad Sci U S A. 2007 Sep 25;104(39):15531-6 21391263 - Hum Brain Mapp. 2012 Jan;33(1):192-202 20237243 - Cereb Cortex. 2010 Dec;20(12):2852-62 21653723 - J Neurophysiol. 2011 Sep;106(3):1125-65 11259662 - Proc Natl Acad Sci U S A. 2001 Mar 27;98 (7):4259-64 21195388 - Biol Psychiatry. 2011 May 1;69(9):847-56 23115342 - Psychosom Med. 2012 Nov-Dec;74(9):904-11 18701759 - J Neurophysiol. 2008 Oct;100(4):1740-8 11994752 - Nat Rev Neurosci. 2002 Mar;3(3):201-15 19412534 - PLoS Comput Biol. 2009 May;5(5):e1000381 15050575 - Neuroimage. 2004 Apr;21(4):1508-17 10836560 - Child Dev. 2000 Jan-Feb;71(1):75-81 3359865 - Child Dev. 1988 Apr;59(2):467-79 16873528 - Bioinformatics. 2006 Jul 15;22(14):e99-107 18653667 - Cereb Cortex. 2009 Mar;19(3):640-57 |
References_xml | – year: 1993 ident: CR40 publication-title: Are sex or gender relevant categories to language Performance? A Critical Review. The Development of Sex Differences and Similarities in Behavior – volume: 35 start-page: 147 issue: 1 year: 2010 end-page: 168 ident: CR69 article-title: Normal development of brain circuits publication-title: Neuropsychopharmacology doi: 10.1038/npp.2009.115 – volume: 103 start-page: 13848 issue: 37 year: 2006 end-page: 13853 ident: CR14 article-title: Consistent resting-state networks across healthy subjects publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0601417103 – volume: 19 start-page: 640 issue: 3 year: 2009 end-page: 657 ident: CR41 article-title: Development of anterior cingulate functional connectivity from late childhood to early adulthood publication-title: Cereb Cortex doi: 10.1093/cercor/bhn117 – volume: 106 start-page: 2322 issue: 5 year: 2011 end-page: 2345 ident: CR6 article-title: The organization of the human cerebellum estimated by intrinsic functional connectivity publication-title: J Neurophysiol doi: 10.1152/jn.00339.2011 – volume: 84 start-page: 320 year: 2014 end-page: 341 ident: CR50 article-title: Methods to detect, characterize, and remove motion artifact in resting state fMRI publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.08.048 – volume: 29 start-page: 1883 issue: 10 year: 2008 end-page: 1889 ident: CR44 article-title: Functional connectivity MR imaging reveals cortical functional connectivity in the developing brain publication-title: AJNR Am J Neuroradiol doi: 10.3174/ajnr.A1256 – volume: 5 start-page: 297 issue: 4 year: 1972 end-page: 305 ident: CR2 article-title: Mirror self-image reactions before age two. Developmental psychology publication-title: Psychology – volume: 6 start-page: e18746 issue: 4 year: 2011 ident: CR60 article-title: Infant brain atlases from neonates to 1- and 2-year-olds publication-title: PLoS ONE doi: 10.1371/journal.pone.0018746 – volume: 76 start-page: 439 year: 2013 end-page: 441 ident: CR49 article-title: Steps toward optimizing motion artifact removal in functional connectivity MRI; a reply to Carp publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.03.017 – volume: 9 start-page: 648 year: 1997 end-page: 663 ident: CR61 article-title: Common blood flow changes across visual tasks: II. Decreases in cerebral cortex publication-title: J Cogn Neurosci doi: 10.1162/jocn.1997.9.5.648 – volume: 21 start-page: 27 year: 1997 end-page: 43 ident: CR38 article-title: Distress and attention interactions in early infancy publication-title: Motiv Emot – volume: 60 start-page: 623 issue: 1 year: 2012 end-page: 632 ident: CR56 article-title: Impact of in-scanner head motion on multiple measures of functional connectivity: relevance for studies of neurodevelopment in youth publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.12.063 – volume: 69 start-page: 847 issue: 9 year: 2010 end-page: 856 ident: CR15 article-title: Aberrant striatal functional connectivity in children with autism publication-title: Biol Psychiatry doi: 10.1016/j.biopsych.2010.10.029 – volume: 67 start-page: 735 issue: 5 year: 2010 end-page: 748 ident: CR46 article-title: The development of human functional brain networks publication-title: Neuron doi: 10.1016/j.neuron.2010.08.017 – ident: CR19 – volume: 59 start-page: 467 issue: 2 year: 1988 end-page: 479 ident: CR37 article-title: Expectation and anticipation of dynamic visual events by 3.5-month-old babies publication-title: Child Dev doi: 10.2307/1130325 – volume: 12 start-page: 147 year: 1995 end-page: 158 ident: CR7 article-title: Gender differences in self-efficacy and attitudes toward computers publication-title: J Educ Comput Res doi: 10.2190/H7E1-XMM7-GU9B-3HWR – volume: 21 start-page: 1508 issue: 4 year: 2004 end-page: 1517 ident: CR59 article-title: Measuring temporal morphological changes robustly in brain MR images via 4-dimensional template warping publication-title: Neuroimage doi: 10.1016/j.neuroimage.2003.12.015 – volume: 22 start-page: e99 issue: 14 year: 2006 end-page: e107 ident: CR18 article-title: SpringScape: visualisation of microarray and contextual bioinformatic data using spring embedding and an ‘information landscape’ publication-title: Bioinformatics doi: 10.1093/bioinformatics/btl205 – volume: 123 start-page: 276 issue: 2 year: 2009 end-page: 283 ident: CR9 article-title: Sex differences in directional cue use in a virtual landscape publication-title: Behav Neurosci doi: 10.1037/a0014722 – volume: 44 start-page: 1505 issue: 5 year: 2008 end-page: 1512 ident: CR11 article-title: Cognitive control factors in speech perception at 11 months publication-title: Dev Psychol doi: 10.1037/a0012975 – volume: 33 start-page: 849 issue: 4 year: 2012 end-page: 860 ident: CR70 article-title: Gender differences in brain functional connectivity density publication-title: Hum Brain Mapp doi: 10.1002/hbm.21252 – volume: 2 start-page: 179 year: 1979 end-page: 184 ident: CR23 article-title: Differential behavioral and cardiac responses of 3-month-old infants to a mirror and peer publication-title: Infant Behav Dev doi: 10.1016/S0163-6383(79)80019-3 – volume: 71 start-page: 75 issue: 1 year: 2000 end-page: 81 ident: CR39 article-title: Functional brain development in infants: elements of an interactive specialization framework publication-title: Child Dev doi: 10.1111/1467-8624.00120 – volume: 26 start-page: 231 issue: 4 year: 2005 end-page: 239 ident: CR53 article-title: Altered resting state networks in mild cognitive impairment and mild Alzheimer’s disease: an fMRI study publication-title: Hum Brain Mapp doi: 10.1002/hbm.20160 – year: 1990 ident: CR54 publication-title: Regulatory mechanisms in infant development the development of attention: research and theory – volume: 1124 start-page: 1 year: 2008 end-page: 38 ident: CR5 article-title: The brain’s default network: anatomy, function, and relevance to disease publication-title: Ann N Y Acad Sci doi: 10.1196/annals.1440.011 – volume: 98 start-page: 676 issue: 2 year: 2001 end-page: 682 ident: CR52 article-title: A default mode of brain function publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.98.2.676 – year: 2001 ident: CR55 publication-title: Mechanism and variation in the development of attentional networks. Handbook of developmental cognitive neuroscience – volume: 33 start-page: 1914 issue: 8 year: 2012 end-page: 1928 ident: CR13 article-title: A whole brain fMRI atlas generated via spatially constrained spectral clustering publication-title: Hum Brain Mapp doi: 10.1002/hbm.21333 – year: 2010 ident: CR64 article-title: Longitudinal analysis of neural network development in preterm infants publication-title: Cereb Cortex – volume: 100 start-page: 1740 issue: 4 year: 2008 end-page: 1748 ident: CR74 article-title: Intrinsic functional relations between human cerebral cortex and thalamus publication-title: J Neurophysiol doi: 10.1152/jn.90463.2008 – volume: 68 start-page: 1084 issue: 12 year: 2010 end-page: 1091 ident: CR22 article-title: Atypical default network connectivity in youth with attention-deficit/hyperactivity disorder publication-title: Biol Psychiatry doi: 10.1016/j.biopsych.2010.07.003 – volume: 19 start-page: 85 issue: 2 year: 1995 end-page: 102 ident: CR43 article-title: Ontogenesis of goal-directed behavior: anatomo-functional considerations publication-title: Int J Psychophysiol doi: 10.1016/0167-8760(94)00081-O – year: 2012 ident: CR48 article-title: Steps toward optimizing motion artifact removal in functional connectivity MRI; a reply to Carp publication-title: Neuroimage – volume: 47 start-page: 1448 issue: 4 year: 2009 end-page: 1459 ident: CR10 article-title: Effects of model-based physiological noise correction on default mode network anti-correlations and correlations publication-title: Neuroimage doi: 10.1016/j.neuroimage.2009.05.012 – volume: 5 start-page: e1000381 issue: 5 year: 2009 ident: CR21 article-title: Functional brain networks develop from a “local to distributed” organization publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1000381 – volume: 98 start-page: 4259 issue: 7 year: 2001 end-page: 4264 ident: CR36 article-title: Medial prefrontal cortex and self-referential mental activity: relation to a default mode of brain function publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.071043098 – volume: 53 start-page: 303 issue: 1 year: 2010 end-page: 317 ident: CR65 article-title: Default network activity, coupled with the frontoparietal control network, supports goal-directed cognition publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.06.016 – volume: 7 start-page: e1000157 issue: 7 year: 2009 ident: CR68 article-title: Development of large-scale functional brain networks in children publication-title: PLoS Biol doi: 10.1371/journal.pbio.1000157 – volume: 64 start-page: 240 year: 2013 end-page: 256 ident: CR57 article-title: An improved framework for confound regression and filtering for control of motion artifact in the preprocessing of resting-state functional connectivity data publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.08.052 – volume: 56 start-page: 924 issue: 5 year: 2007 end-page: 935 ident: CR3 article-title: Disruption of large-scale brain systems in advanced aging publication-title: Neuron doi: 10.1016/j.neuron.2007.10.038 – volume: 102 start-page: 9673 issue: 27 year: 2005 end-page: 9678 ident: CR25 article-title: The human brain is intrinsically organized into dynamic, anticorrelated functional networks publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0504136102 – volume: 7 start-page: 34 year: 2013 ident: CR32 article-title: The dynamic reorganization of the default-mode network during a visual classification task publication-title: Front Syst Neurosci doi: 10.3389/fnsys.2013.00034 – volume: 100 start-page: 3328 issue: 6 year: 2008 end-page: 3342 ident: CR71 article-title: Evidence for a frontoparietal control system revealed by intrinsic functional connectivity publication-title: J Neurophysiol doi: 10.1152/jn.90355.2008 – volume: 104 start-page: 15531 issue: 39 year: 2007 end-page: 15536 ident: CR26 article-title: Resting-state networks in the infant brain publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0704380104 – volume: 109 start-page: 12788 issue: 31 year: 2012 end-page: 12793 ident: CR24 article-title: Competitive and cooperative dynamics of large-scale brain functional networks supporting recollection publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1204185109 – year: 2012 ident: CR31 article-title: The synchronization within and interaction between the default and dorsal attention networks in early infancy publication-title: Cereb Cortex:doi – volume: 3 start-page: 201 issue: 3 year: 2002 end-page: 215 ident: CR12 article-title: Control of goal-directed and stimulus-driven attention in the brain publication-title: Nat Rev Neurosci doi: 10.1038/nrn755 – year: 2012 ident: CR34 article-title: Longitudinal development of cortical and subcortical gray matter from birth to 2 years publication-title: Cereb Cortex – volume: 34 start-page: 537 issue: 4 year: 1995 end-page: 541 ident: CR4 article-title: Functional connectivity in the motor cortex of resting human brain using echo-planar MRI publication-title: Magn Reson Med doi: 10.1002/mrm.1910340409 – volume: 27 start-page: 2349 issue: 9 year: 2007 end-page: 2356 ident: CR58 article-title: Dissociable intrinsic connectivity networks for salience processing and executive control publication-title: J Neurosci doi: 10.1523/JNEUROSCI.5587-06.2007 – volume: 106 start-page: 13040 issue: 31 year: 2009 end-page: 13045 ident: CR63 article-title: Correspondence of the brain’s functional architecture during activation and rest publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0905267106 – volume: 30 start-page: 452 issue: 2 year: 2006 end-page: 461 ident: CR42 article-title: Sex-related differences in amygdala functional connectivity during resting conditions publication-title: Neuroimage doi: 10.1016/j.neuroimage.2005.09.065 – year: 2013 ident: CR1 article-title: Consistent anterior-posterior segregation of the insula during the first two years of life publication-title: Cerebral Cortex:doi – volume: 14 start-page: 140 issue: 3 year: 2001 end-page: 151 ident: CR8 article-title: A method for making group inferences from functional MRI data using independent component analysis publication-title: Hum Brain Mapp doi: 10.1002/hbm.1048 – volume: 23 start-page: S208 issue: Suppl 1 year: 2004 end-page: S219 ident: CR62 article-title: Advances in functional and structural MR image analysis and implementation as FSL publication-title: Neuroimage doi: 10.1016/j.neuroimage.2004.07.051 – year: 1993 ident: CR33 publication-title: How and why sex differences evolve, with spatial ability as a paradigm example. The development of sex differences and similarities in behavior – volume: 33 start-page: 192 issue: 1 year: 2012 end-page: 202 ident: CR28 article-title: Frontal parietal control network regulates the anti-correlated default and dorsal attention networks publication-title: Hum Brain Mapp doi: 10.1002/hbm.21204 – volume: 105 start-page: 4028 issue: 10 year: 2008 end-page: 4032 ident: CR20 article-title: The maturing architecture of the brain’s default network publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0800376105 – volume: 353 start-page: 1915 issue: 1377 year: 1998 end-page: 1927 ident: CR45 article-title: Attention, self-regulation and consciousness publication-title: Philos Trans R Soc Lond B Biol Sci doi: 10.1098/rstb.1998.0344 – volume: 74 start-page: 904 issue: 9 year: 2012 end-page: 911 ident: CR66 article-title: Neural dysregulation in posttraumatic stress disorder: evidence for disrupted equilibrium between salience and default mode brain networks publication-title: Psychosom Med doi: 10.1097/PSY.0b013e318273bf33 – volume: 59 start-page: 2142 issue: 3 year: 2012 end-page: 2154 ident: CR47 article-title: Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.10.018 – volume: 101 start-page: 4637 issue: 13 year: 2004 end-page: 4642 ident: CR35 article-title: Default-mode network activity distinguishes Alzheimer’s disease from healthy aging: evidence from functional MRI publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0308627101 – volume: 106 start-page: 1125 issue: 3 year: 2011 end-page: 1165 ident: CR73 article-title: The organization of the human cerebral cortex estimated by intrinsic functional connectivity publication-title: J Neurophysiol doi: 10.1152/jn.00338.2011 – year: 1989 ident: CR51 publication-title: Fetal behavior, fetal neurology – volume: 7 start-page: e36356 issue: 5 year: 2012 ident: CR67 article-title: Resting-state functional connectivity between fronto-parietal and default mode networks in obsessive-compulsive disorder publication-title: PLoS ONE doi: 10.1371/journal.pone.0036356 – year: 2012 ident: CR72 article-title: Disrupted functional brain connectome in individuals at risk for Alzheimer’s disease publication-title: Biol Psychiatry – volume: 13 start-page: 5 issue: 1 year: 1993 end-page: 14 ident: CR27 article-title: Functional connectivity: the principal-component analysis of large (PET) data sets publication-title: J Cereb Blood Flow Metab doi: 10.1038/jcbfm.1993.4 – volume: 106 start-page: 6790 issue: 16 year: 2009 end-page: 6795 ident: CR29 article-title: Evidence on the emergence of the brain’s default network from 2-week-old to 2-year-old healthy pediatric subjects publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0811221106 – volume: 107 start-page: 20015 issue: 46 year: 2011 end-page: 20020 ident: CR17 article-title: Emergence of resting state networks in the preterm human brain publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1007921107 – volume: 68 start-page: 839 issue: 9 year: 2010 end-page: 846 ident: CR16 article-title: Fronto-temporal spontaneous resting state functional connectivity in pediatric bipolar disorder publication-title: Biol Psychiatry doi: 10.1016/j.biopsych.2010.06.029 – volume: 6 start-page: e25278 issue: 9 year: 2011 ident: CR30 article-title: Temporal and spatial evolution of brain network topology during the first two years of life publication-title: PLoS ONE doi: 10.1371/journal.pone.0025278 – volume: 14 start-page: 140 issue: 3 year: 2001 ident: 710_CR8 publication-title: Hum Brain Mapp doi: 10.1002/hbm.1048 – volume: 33 start-page: 1914 issue: 8 year: 2012 ident: 710_CR13 publication-title: Hum Brain Mapp doi: 10.1002/hbm.21333 – volume: 19 start-page: 85 issue: 2 year: 1995 ident: 710_CR43 publication-title: Int J Psychophysiol doi: 10.1016/0167-8760(94)00081-O – volume: 35 start-page: 147 issue: 1 year: 2010 ident: 710_CR69 publication-title: Neuropsychopharmacology doi: 10.1038/npp.2009.115 – volume: 12 start-page: 147 year: 1995 ident: 710_CR7 publication-title: J Educ Comput Res doi: 10.2190/H7E1-XMM7-GU9B-3HWR – volume: 59 start-page: 2142 issue: 3 year: 2012 ident: 710_CR47 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.10.018 – volume: 105 start-page: 4028 issue: 10 year: 2008 ident: 710_CR20 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0800376105 – volume: 33 start-page: 192 issue: 1 year: 2012 ident: 710_CR28 publication-title: Hum Brain Mapp doi: 10.1002/hbm.21204 – volume: 71 start-page: 75 issue: 1 year: 2000 ident: 710_CR39 publication-title: Child Dev doi: 10.1111/1467-8624.00120 – volume: 84 start-page: 320 year: 2014 ident: 710_CR50 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.08.048 – volume: 107 start-page: 20015 issue: 46 year: 2011 ident: 710_CR17 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1007921107 – volume: 21 start-page: 27 year: 1997 ident: 710_CR38 publication-title: Motiv Emot – volume: 69 start-page: 847 issue: 9 year: 2010 ident: 710_CR15 publication-title: Biol Psychiatry doi: 10.1016/j.biopsych.2010.10.029 – volume: 76 start-page: 439 year: 2013 ident: 710_CR49 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.03.017 – volume: 26 start-page: 231 issue: 4 year: 2005 ident: 710_CR53 publication-title: Hum Brain Mapp doi: 10.1002/hbm.20160 – volume: 101 start-page: 4637 issue: 13 year: 2004 ident: 710_CR35 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0308627101 – volume-title: Mechanism and variation in the development of attentional networks. Handbook of developmental cognitive neuroscience year: 2001 ident: 710_CR55 – volume: 7 start-page: e1000157 issue: 7 year: 2009 ident: 710_CR68 publication-title: PLoS Biol doi: 10.1371/journal.pbio.1000157 – volume: 56 start-page: 924 issue: 5 year: 2007 ident: 710_CR3 publication-title: Neuron doi: 10.1016/j.neuron.2007.10.038 – volume: 21 start-page: 1508 issue: 4 year: 2004 ident: 710_CR59 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2003.12.015 – volume: 6 start-page: e18746 issue: 4 year: 2011 ident: 710_CR60 publication-title: PLoS ONE doi: 10.1371/journal.pone.0018746 – volume: 23 start-page: S208 issue: Suppl 1 year: 2004 ident: 710_CR62 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2004.07.051 – volume: 109 start-page: 12788 issue: 31 year: 2012 ident: 710_CR24 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1204185109 – volume-title: Are sex or gender relevant categories to language Performance? A Critical Review. The Development of Sex Differences and Similarities in Behavior year: 1993 ident: 710_CR40 – volume: 29 start-page: 1883 issue: 10 year: 2008 ident: 710_CR44 publication-title: AJNR Am J Neuroradiol doi: 10.3174/ajnr.A1256 – volume: 104 start-page: 15531 issue: 39 year: 2007 ident: 710_CR26 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0704380104 – volume: 103 start-page: 13848 issue: 37 year: 2006 ident: 710_CR14 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0601417103 – volume: 5 start-page: 297 issue: 4 year: 1972 ident: 710_CR2 publication-title: Psychology – volume: 27 start-page: 2349 issue: 9 year: 2007 ident: 710_CR58 publication-title: J Neurosci doi: 10.1523/JNEUROSCI.5587-06.2007 – volume: 1124 start-page: 1 year: 2008 ident: 710_CR5 publication-title: Ann N Y Acad Sci doi: 10.1196/annals.1440.011 – volume: 53 start-page: 303 issue: 1 year: 2010 ident: 710_CR65 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.06.016 – volume: 106 start-page: 6790 issue: 16 year: 2009 ident: 710_CR29 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0811221106 – year: 2012 ident: 710_CR34 publication-title: Cereb Cortex – volume: 3 start-page: 201 issue: 3 year: 2002 ident: 710_CR12 publication-title: Nat Rev Neurosci doi: 10.1038/nrn755 – volume: 33 start-page: 849 issue: 4 year: 2012 ident: 710_CR70 publication-title: Hum Brain Mapp doi: 10.1002/hbm.21252 – year: 2012 ident: 710_CR48 publication-title: Neuroimage – volume: 106 start-page: 1125 issue: 3 year: 2011 ident: 710_CR73 publication-title: J Neurophysiol doi: 10.1152/jn.00338.2011 – volume: 102 start-page: 9673 issue: 27 year: 2005 ident: 710_CR25 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0504136102 – volume: 5 start-page: e1000381 issue: 5 year: 2009 ident: 710_CR21 publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1000381 – volume: 106 start-page: 2322 issue: 5 year: 2011 ident: 710_CR6 publication-title: J Neurophysiol doi: 10.1152/jn.00339.2011 – volume: 60 start-page: 623 issue: 1 year: 2012 ident: 710_CR56 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.12.063 – volume: 68 start-page: 839 issue: 9 year: 2010 ident: 710_CR16 publication-title: Biol Psychiatry doi: 10.1016/j.biopsych.2010.06.029 – volume: 13 start-page: 5 issue: 1 year: 1993 ident: 710_CR27 publication-title: J Cereb Blood Flow Metab doi: 10.1038/jcbfm.1993.4 – volume: 22 start-page: e99 issue: 14 year: 2006 ident: 710_CR18 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btl205 – volume: 2 start-page: 179 year: 1979 ident: 710_CR23 publication-title: Infant Behav Dev doi: 10.1016/S0163-6383(79)80019-3 – volume: 67 start-page: 735 issue: 5 year: 2010 ident: 710_CR46 publication-title: Neuron doi: 10.1016/j.neuron.2010.08.017 – volume-title: How and why sex differences evolve, with spatial ability as a paradigm example. The development of sex differences and similarities in behavior year: 1993 ident: 710_CR33 – volume: 100 start-page: 1740 issue: 4 year: 2008 ident: 710_CR74 publication-title: J Neurophysiol doi: 10.1152/jn.90463.2008 – volume: 7 start-page: 34 year: 2013 ident: 710_CR32 publication-title: Front Syst Neurosci – volume: 19 start-page: 640 issue: 3 year: 2009 ident: 710_CR41 publication-title: Cereb Cortex doi: 10.1093/cercor/bhn117 – volume: 47 start-page: 1448 issue: 4 year: 2009 ident: 710_CR10 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2009.05.012 – volume: 353 start-page: 1915 issue: 1377 year: 1998 ident: 710_CR45 publication-title: Philos Trans R Soc Lond B Biol Sci doi: 10.1098/rstb.1998.0344 – volume: 74 start-page: 904 issue: 9 year: 2012 ident: 710_CR66 publication-title: Psychosom Med doi: 10.1097/PSY.0b013e318273bf33 – volume: 7 start-page: e36356 issue: 5 year: 2012 ident: 710_CR67 publication-title: PLoS ONE doi: 10.1371/journal.pone.0036356 – year: 2010 ident: 710_CR64 publication-title: Cereb Cortex – volume: 34 start-page: 537 issue: 4 year: 1995 ident: 710_CR4 publication-title: Magn Reson Med doi: 10.1002/mrm.1910340409 – volume: 30 start-page: 452 issue: 2 year: 2006 ident: 710_CR42 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2005.09.065 – volume: 100 start-page: 3328 issue: 6 year: 2008 ident: 710_CR71 publication-title: J Neurophysiol doi: 10.1152/jn.90355.2008 – volume-title: Fetal behavior, fetal neurology year: 1989 ident: 710_CR51 – volume: 9 start-page: 648 year: 1997 ident: 710_CR61 publication-title: J Cogn Neurosci doi: 10.1162/jocn.1997.9.5.648 – year: 2012 ident: 710_CR31 publication-title: Cereb Cortex:doi – year: 2012 ident: 710_CR72 publication-title: Biol Psychiatry – volume-title: Regulatory mechanisms in infant development the development of attention: research and theory year: 1990 ident: 710_CR54 – volume: 59 start-page: 467 issue: 2 year: 1988 ident: 710_CR37 publication-title: Child Dev doi: 10.2307/1130325 – volume: 44 start-page: 1505 issue: 5 year: 2008 ident: 710_CR11 publication-title: Dev Psychol doi: 10.1037/a0012975 – volume: 98 start-page: 4259 issue: 7 year: 2001 ident: 710_CR36 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.071043098 – volume: 98 start-page: 676 issue: 2 year: 2001 ident: 710_CR52 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.98.2.676 – ident: 710_CR19 doi: 10.1016/j.cortex.2013.10.012 – year: 2013 ident: 710_CR1 publication-title: Cerebral Cortex:doi – volume: 106 start-page: 13040 issue: 31 year: 2009 ident: 710_CR63 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0905267106 – volume: 68 start-page: 1084 issue: 12 year: 2010 ident: 710_CR22 publication-title: Biol Psychiatry doi: 10.1016/j.biopsych.2010.07.003 – volume: 123 start-page: 276 issue: 2 year: 2009 ident: 710_CR9 publication-title: Behav Neurosci doi: 10.1037/a0014722 – volume: 6 start-page: e25278 issue: 9 year: 2011 ident: 710_CR30 publication-title: PLoS ONE doi: 10.1371/journal.pone.0025278 – volume: 64 start-page: 240 year: 2013 ident: 710_CR57 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.08.052 – reference: 21195388 - Biol Psychiatry. 2011 May 1;69(9):847-56 – reference: 22807481 - Proc Natl Acad Sci U S A. 2012 Jul 31;109(31):12788-93 – reference: 11994752 - Nat Rev Neurosci. 2002 Mar;3(3):201-15 – reference: 21653723 - J Neurophysiol. 2011 Sep;106(3):1125-65 – reference: 19331451 - Behav Neurosci. 2009 Apr;123(2):276-83 – reference: 15976020 - Proc Natl Acad Sci U S A. 2005 Jul 5;102(27):9673-8 – reference: 16945915 - Proc Natl Acad Sci U S A. 2006 Sep 12;103(37):13848-53 – reference: 19621066 - PLoS Biol. 2009 Jul;7(7):e1000157 – reference: 18322013 - Proc Natl Acad Sci U S A. 2008 Mar 11;105(10):4028-32 – reference: 22368080 - Cereb Cortex. 2013 Mar;23(3):594-603 – reference: 10836560 - Child Dev. 2000 Jan-Feb;71(1):75-81 – reference: 18799601 - J Neurophysiol. 2008 Dec;100(6):3328-42 – reference: 9854264 - Philos Trans R Soc Lond B Biol Sci. 1998 Nov 29;353(1377):1915-27 – reference: 24315034 - Cortex. 2014 Feb;51:56-66 – reference: 23115342 - Psychosom Med. 2012 Nov-Dec;74(9):904-11 – reference: 22233733 - Neuroimage. 2012 Mar;60(1):623-32 – reference: 8417010 - J Cereb Blood Flow Metab. 1993 Jan;13(1):5-14 – reference: 19446646 - Neuroimage. 2009 Oct 1;47(4):1448-59 – reference: 3359865 - Child Dev. 1988 Apr;59(2):467-79 – reference: 20739018 - Biol Psychiatry. 2010 Nov 1;68(9):839-46 – reference: 22440651 - Neuroimage. 2013 Aug 1;76:439-41 – reference: 22570705 - PLoS One. 2012;7(5):e36356 – reference: 18701759 - J Neurophysiol. 2008 Oct;100(4):1740-8 – reference: 11559959 - Hum Brain Mapp. 2001 Nov;14(3):140-51 – reference: 22926292 - Neuroimage. 2013 Jan 1;64:240-56 – reference: 20600998 - Neuroimage. 2010 Oct 15;53(1):303-17 – reference: 15954139 - Hum Brain Mapp. 2005 Dec;26(4):231-9 – reference: 18054866 - Neuron. 2007 Dec 6;56(5):924-35 – reference: 23965122 - J Cogn Neurosci. 1997 Fall;9(5):648-63 – reference: 18400922 - Ann N Y Acad Sci. 2008 Mar;1124:1-38 – reference: 20237243 - Cereb Cortex. 2010 Dec;20(12):2852-62 – reference: 21425398 - Hum Brain Mapp. 2012 Apr;33(4):849-60 – reference: 11259662 - Proc Natl Acad Sci U S A. 2001 Mar 27;98 (7):4259-64 – reference: 7622411 - Int J Psychophysiol. 1995 Mar;19(2):85-102 – reference: 15501092 - Neuroimage. 2004;23 Suppl 1:S208-19 – reference: 16326115 - Neuroimage. 2006 Apr 1;30(2):452-61 – reference: 24248433 - Cereb Cortex. 2015 May;25(5):1176-87 – reference: 21795627 - J Neurophysiol. 2011 Nov;106(5):2322-45 – reference: 19620724 - Proc Natl Acad Sci U S A. 2009 Aug 4;106(31):13040-5 – reference: 17329432 - J Neurosci. 2007 Feb 28;27(9):2349-56 – reference: 8524021 - Magn Reson Med. 1995 Oct;34(4):537-41 – reference: 16873528 - Bioinformatics. 2006 Jul 15;22(14):e99-107 – reference: 19794405 - Neuropsychopharmacology. 2010 Jan;35(1):147-68 – reference: 18653667 - Cereb Cortex. 2009 Mar;19(3):640-57 – reference: 18784212 - AJNR Am J Neuroradiol. 2008 Nov;29(10):1883-9 – reference: 21533194 - PLoS One. 2011 Apr 14;6(4):e18746 – reference: 23994314 - Neuroimage. 2014 Jan 1;84:320-41 – reference: 17878310 - Proc Natl Acad Sci U S A. 2007 Sep 25;104(39):15531-6 – reference: 15050575 - Neuroimage. 2004 Apr;21(4):1508-17 – reference: 22019881 - Neuroimage. 2012 Feb 1;59(3):2142-54 – reference: 21391263 - Hum Brain Mapp. 2012 Jan;33(1):192-202 – reference: 21041625 - Proc Natl Acad Sci U S A. 2010 Nov 16;107(46):20015-20 – reference: 23898240 - Front Syst Neurosci. 2013 Jul 26;7:34 – reference: 19412534 - PLoS Comput Biol. 2009 May;5(5):e1000381 – reference: 21966479 - PLoS One. 2011;6(9):e25278 – reference: 15070770 - Proc Natl Acad Sci U S A. 2004 Mar 30;101(13):4637-42 – reference: 4679817 - Dev Psychobiol. 1972;5(4):297-305 – reference: 22537793 - Biol Psychiatry. 2013 Mar 1;73(5):472-81 – reference: 18793082 - Dev Psychol. 2008 Sep;44(5):1505-12 – reference: 20826306 - Neuron. 2010 Sep 9;67(5):735-48 – reference: 20728873 - Biol Psychiatry. 2010 Dec 15;68(12):1084-91 – reference: 21769991 - Hum Brain Mapp. 2012 Aug;33(8):1914-28 – reference: 22109543 - Cereb Cortex. 2012 Nov;22(11):2478-85 – reference: 19351894 - Proc Natl Acad Sci U S A. 2009 Apr 21;106(16):6790-5 – reference: 11209064 - Proc Natl Acad Sci U S A. 2001 Jan 16;98 (2):676-82 |
SSID | ssj0059819 ssj0012825 |
Score | 2.5287437 |
Snippet | The brain’s mature functional network architecture has been extensively studied but the early emergence of the brain’s network organization remains largely... The brain's mature functional network architecture has been extensively studied but the early emergence of the brain's network organization remains largely... |
SourceID | pubmedcentral proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1173 |
SubjectTerms | Adult Age Factors Babies Biomedical and Life Sciences Biomedicine Brain Brain Mapping - methods Cell Biology Cerebral Cortex - growth & development Child Development Child, Preschool Female Gender Humans Infant Infant, Newborn Linear Models Magnetic Resonance Imaging Male Models, Neurological Nerve Net - growth & development Neurology Neurosciences Original Article Retrospective Studies Sex Factors |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lj9MwEB6xRbvigqBlIVCQV0IcFkUk9SPOCVWIUiGV01aquESx44iVlqTQ9sC_Z8Z50FJtj0ncPDpjzzcPzwfwVqdRHqmyDEVSulCUZUyBJh0WIhImLtIy8lwEi29qvhRfV3LVBtw2bVlltyb6hbqoLcXIP8RoKnmC3pz8uP4VEmsUZVdbCo0zeEity8j5Sla9wxXTvszuQKbas3zEWvFwoiTvUpxR01F0QmVDgvbz4Lp0aKSOkOdxAeV_WVRvnGZP4HGLKtm0UYOn8MBVQxhNK_Sof_5h75iv8_QB9CFcLNp0-hDOv9f-5Ai-7BUPsbpknrqPGeKPYOif-oA3q5qScbaffGDNPkeGikrr9DNYzj7ffJqHLcdCaBGbEBM9gTwn0IpbzWk2S8stgiRpJqpwViVGcpsrExXGEZUV4rMSfbYiFsahOPklDKq6ci-AcbyNKJTIU6uFNiLVNiceJIMYTFphAoi6PzWzbQNy4sG4y_rWyV4OGcohIzlkPIDr_ifrpvvGqcHjTlJZOxE32T-1CeCqv4xTiPIieeXqnR-TUk8bGZ0aQzuChRaTAJ43wu_fCBGSStFyBJAcqEU_gFp4H16pbn_4Vt5CS4QQ-Nz3nQLtvfp9H_ry9Ie-gkeI6mRTKDeGwfb3zr1G5LQ1b_z0-AtyTRET priority: 102 providerName: ProQuest |
Title | Development of human brain cortical network architecture during infancy |
URI | https://link.springer.com/article/10.1007/s00429-014-0710-3 https://www.ncbi.nlm.nih.gov/pubmed/24469153 https://www.proquest.com/docview/1658370465 https://www.proquest.com/docview/1659767550 https://www.proquest.com/docview/1664214842 https://pubmed.ncbi.nlm.nih.gov/PMC4850360 |
Volume | 220 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB4VUKVe-oA-AhS5EuqhVZCzHjvOcVstIFARqkDa9hLFjqMiIItg90B_PWPnoV1okTglUiYPO-PxZ8_jA9jWGS-4qqoY08rFWFWJ32jScYkcTVJmFQ9cBD-O1P4pHozluM3jvumi3TuXZLDUfbJbsJ209EWfdEPGYwlWCH5wUu6V4d6vw1FngGWmA59HopWIB0qKzpn5r4csTkcPMObDUMl7_tIwDe2-gpOuAU30yfnObGp27N97tR2f2MLX8LKFpWzY6NEbeObqVVgb1rQkv7xln1kIFA078Kvw_PcknK3B3lzIEZtULBD-MeNZJxitasM2OaubQHM277JgTXYkI_X21v0tnO6OTr7vxy0zQ2wJ0Xj-eg8NHdLcb7XwNkBaYQlaSTNQpbMqNVLYQhleGucJsAjVVbTSKxM0jpRAvIPlelK7D8AEPQZLhUVmNWqDmbaFZ08yhNykRRMB735Qbtuy5Z494yLvCy6Hbsup23LfbbmI4Et_y1VTs-Mx4c3ur-ft8L3JE8JlIuWoZASf-ss08Lw3pajdZBZkMl8JR_LHZHweMWocRPC-UaT-iwhXqYzmmwjSBRXrBXzh78Ur9dmfUAActSTgQe_92unR3Kf_r6HrT5LegBcEDWUTbbcJy9PrmftI8GtqtmApHadb7aCj47fR0fHPO7ImJrc |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIh4XBFsegQJGAg6gCCd-xDkgVAFlS7s9tdKKS4gdRyBBUmgr1D_Fb2TGebBLxd563I03G2fGnm88jw_gqcl5yXVdxzKrfSzrOqGDJhNXkkubVHnNAxfBbF9PD-XHuZqvwe-hFobSKoc9MWzUVevojPxVgqZSZOjNqTdHP2JijaLo6kCh0anFrj_7hS7b8euddyjfZ2m6_f7g7TTuWQVih9aYuNcJ1niJdssZQfqrnHAIC5RNdeWdzqwSrtSWV9YTeRMikhq9lCqR1uMEBN73ElxGw8sphTCbjw5eQnWgwweVm8Aqkhgt4lQrMYRUedfBNKU0JUn1Q7gPLhvFc0j3fMLmP1HbYAy3b8KNHsWyrU7tbsGabyawsdWgB__9jD1nIa80HNhP4OqsD99P4MqnNny5AR8WkpVYW7NAFcgs8VUw9IfDATtruhR1thjsYF1dJcOFQXbhNhxeyNu_A-tN2_h7wATeRlZalrkz0liZG1cS75JFzKectBHw4aUWrm94Trwb34qxVXOQQ4FyKEgOhYjgxfiTo67bx6rBm4Okin7hHxd_1TSCJ-NlXLIUhykb356GMTn10FF81RiqQJZGphHc7YQ_PhEiMp2jpYogW1KLcQC1DF--0nz9ElqHS6MQsuD_vhwUaOHR_zfR-6sn-hiuTQ9me8Xezv7uA7iOiFJ1SXqbsH7y89Q_RNR2Yh-FpcLg80WvzT-SjkwA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIiouCLY8AgWMBBxAUZP4EeeAUEVZWkorDlRacUljxxZIkBTaCvWv8euYcR7sUrG3HnfjzcaZGc83nvF8AE91kVSJ8j4WuXex8D6ljSYd1yIRJq0LnwQugv0DtXMo3s_kbAV-D2dhqKxyWBPDQl23lvbIN1N0lTzHaE5u-r4s4uP29PXxj5gYpCjTOtBpdCqy585_Yfh28mp3G2X9LMumbz-92Yl7hoHYomcmHnaCOE6gD7Oaky5Lyy1CBGkyVTurciO5rZRJauOIyAnRiceIpU6FcTgZjve9Aldzjm4TbSmfjcFeSmdChw-y0IFhJNWKx5mSfEivJl0304xKlgSdJcI1cdFBXkC9F4s3_8ngBsc4vQk3ekTLtjoVvAUrrpnA-laD0fz3c_achRrTsHk_gbX9PpU_gWuf2_DlOrybK1xirWeBNpAZ4q5gGBuHzXbWdOXqbD7xwbozlgyNhHzEbTi8lLd_B1abtnH3gHG8jaiVqAqrhTai0LYiDiaD-E9aYSJIhpda2r75OXFwfCvHts1BDiXKoSQ5lDyCF-NPjrvOH8sGbwySKvtF4KT8q7IRPBkvo_lSTqZqXHsWxhTUT0cmy8bQaWShRRbB3U744xMhOlMFeq0I8gW1GAdQ-_DFK83XL6GNuNAS4Qv-78tBgeYe_X8Tvb98oo9hDa2y_LB7sPcAriO4lF293gasnv48cw8RwJ2aR8FSGBxdtmn-AXIOUDY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+of+human+brain+cortical+network+architecture+during+infancy&rft.jtitle=Brain+structure+%26+function&rft.au=Gao%2C+Wei&rft.au=Alcauter%2C+Sarael&rft.au=Smith%2C+J.+Keith&rft.au=Gilmore%2C+John+H.&rft.date=2015-03-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=1863-2653&rft.eissn=1863-2661&rft.volume=220&rft.issue=2&rft.spage=1173&rft.epage=1186&rft_id=info:doi/10.1007%2Fs00429-014-0710-3&rft.externalDocID=10_1007_s00429_014_0710_3 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1863-2653&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1863-2653&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1863-2653&client=summon |