Development of human brain cortical network architecture during infancy

The brain’s mature functional network architecture has been extensively studied but the early emergence of the brain’s network organization remains largely unknown. In this study, leveraging a large sample (143 subjects) with longitudinal rsfMRI scans (333 datasets), we aimed to characterize the imp...

Full description

Saved in:
Bibliographic Details
Published inBrain Structure and Function Vol. 220; no. 2; pp. 1173 - 1186
Main Authors Gao, Wei, Alcauter, Sarael, Smith, J. Keith, Gilmore, John H., Lin, Weili
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.03.2015
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The brain’s mature functional network architecture has been extensively studied but the early emergence of the brain’s network organization remains largely unknown. In this study, leveraging a large sample (143 subjects) with longitudinal rsfMRI scans (333 datasets), we aimed to characterize the important developmental process of the brain’s functional network architecture during the first 2 years of life. Based on spatial independent component analysis and longitudinal linear mixed effect modeling, our results unveiled the detailed topology and growth trajectories of nine cortical functional networks. Within networks, our findings clearly separated the brains networks into two categories: primary networks were topologically adult-like in neonates while higher-order networks were topologically incomplete and isolated in neonates but demonstrated consistent synchronization during the first 2 years of life (connectivity increases 0.13–0.35). Between networks, our results demonstrated both network-level connectivity decreases (−0.02 to −0.64) and increases (0.05–0.18) but decreasing connections ( n  = 14) dominated increasing ones ( n  = 5). Finally, significant sex differences were observed with boys demonstrating faster network-level connectivity increases among the two frontoparietal networks (growth rate was 1.63e-4 per day for girls and 2.69e-4 per day for boys, p  < 1e-4). Overall, our study delineated the development of the whole brain functional architecture during the first 2 years of life featuring significant changes of both within- and between-network interactions.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ISSN:1863-2653
1863-2661
1863-2661
0340-2061
DOI:10.1007/s00429-014-0710-3