ITD mutation in FLT3 tyrosine kinase promotes Warburg effect and renders therapeutic sensitivity to glycolytic inhibition

Internal tandem duplication (ITD) mutation in Fms-like tyrosine kinase 3 gene (FLT3/ITD) represents an unfavorable genetic change in acute myeloid leukemia (AML) and is associated with poor prognosis. Metabolic alterations have been involved in tumor progression and attracted interest as a target fo...

Full description

Saved in:
Bibliographic Details
Published inLeukemia Vol. 31; no. 10; pp. 2143 - 2150
Main Authors Ju, H-Q, Zhan, G, Huang, A, Sun, Y, Wen, S, Yang, J, Lu, W-h, Xu, R-h, Li, J, Li, Y, Garcia-Manero, G, Huang, P, Hu, Y
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.10.2017
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Internal tandem duplication (ITD) mutation in Fms-like tyrosine kinase 3 gene (FLT3/ITD) represents an unfavorable genetic change in acute myeloid leukemia (AML) and is associated with poor prognosis. Metabolic alterations have been involved in tumor progression and attracted interest as a target for therapeutic intervention. However, few studies analyzed the adaptations of cellular metabolism in the context of FLT3/ITD mutation. Here, we report that FLT3/ITD causes a significant increase in aerobic glycolysis through AKT-mediated upregulation of mitochondrial hexokinase (HK2), and renders the leukemia cells highly dependent on glycolysis and sensitive to pharmacological inhibition of glycolytic activity. Inhibition of glycolysis preferentially causes severe ATP depletion and massive cell death in FLT3/ITD leukemia cells. Glycolytic inhibitors significantly enhances the cytotoxicity induced by FLT3 tyrosine kinase inhibitor sorafenib. Importantly, such combination provides substantial therapeutic benefit in a murine model bearing FLT3/ITD leukemia. Our study suggests that FLT3/ITD mutation promotes Warburg effect, and such metabolic alteration can be exploited to develop effective therapeutic strategy for treatment of AML with FLT3/ITD mutation via metabolic intervention.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
These authors contributed equally to this work.
ISSN:0887-6924
1476-5551
DOI:10.1038/leu.2017.45