Synaptic Vesicle Phosphoproteins and Regulation of Synaptic Function

Complex brain functions, such as learning and memory, are believed to involve changes in the efficiency of communication between nerve cells. Therefore, the elucidation of the molecular mechanisms that regulate synaptic transmission, the process of intercellular communication, is an essential step t...

Full description

Saved in:
Bibliographic Details
Published inScience (American Association for the Advancement of Science) Vol. 259; no. 5096; pp. 780 - 785
Main Authors Greengard, Paul, Valtorta, Flavia, Czernik, Andrew J., Benfenati, Fabio
Format Journal Article
LanguageEnglish
Published Washington, DC American Society for the Advancement of Science 05.02.1993
American Association for the Advancement of Science
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Complex brain functions, such as learning and memory, are believed to involve changes in the efficiency of communication between nerve cells. Therefore, the elucidation of the molecular mechanisms that regulate synaptic transmission, the process of intercellular communication, is an essential step toward understanding nervous system function. Several proteins associated with synaptic vesicles, the organelles that store neurotransmitters, are targets for protein phosphorylation and dephosphorylation. One of these phosphoproteins, synapsin I, by means of changes in its state of phosphorylation, appears to control the fraction of synaptic vesicles available for release and thereby to regulate the efficiency of neurotransmitter release. This article describes current understanding of the mechanism by which synapsin I modulates communication between nerve cells and reviews the properties and putative functions of other phosphoproteins associated with synaptic vesicles.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Feature-3
ObjectType-Review-1
ISSN:0036-8075
1095-9203
DOI:10.1126/science.8430330