Plausibility Tracking: A method to evaluate anatomical connectivity and microstructural properties along fiber pathways

Diffusion MRI is a non-invasive method that potentially gives insight into the brain's white matter structure regarding the pathway of connections and properties of the axons. Here, we propose a novel global tractography method named Plausibility Tracking that provides the most plausible pathwa...

Full description

Saved in:
Bibliographic Details
Published inNeuroImage (Orlando, Fla.) Vol. 90; pp. 163 - 178
Main Authors Schreiber, Jan, Riffert, Till, Anwander, Alfred, Knösche, Thomas R.
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier Inc 15.04.2014
Elsevier
Elsevier Limited
Subjects
Online AccessGet full text
ISSN1053-8119
1095-9572
1095-9572
DOI10.1016/j.neuroimage.2014.01.002

Cover

More Information
Summary:Diffusion MRI is a non-invasive method that potentially gives insight into the brain's white matter structure regarding the pathway of connections and properties of the axons. Here, we propose a novel global tractography method named Plausibility Tracking that provides the most plausible pathway, modeled as a smooth spline curve, between two locations in the brain. Compared to other tractography methods, plausibility tracking combines the more complete connectivity pattern of probabilistic tractography with smooth tracks that are globally optimized using the fiber orientation density function and hence is relatively robust against local noise and error propagation. It has been tested on phantom and biological data and compared to other methods of tractography. Plausibility tracking provides reliable local directions all along the fiber pathways which makes it especially interesting for tract-based analysis in combination with direction dependent indices of diffusion MRI. In order to demonstrate this potential of plausibility tracking, we propose a framework for the assessment and comparison of diffusion derived tissue properties. This framework comprises atlas-guided parameterization of tract representation and advanced bundle-specific indices describing fiber density, fiber spread and white matter complexity. We explore the new method using real data and show that it allows for a more specific interpretation of the white matter's microstructure compared to rotationally invariant indices derived from the diffusion tensor. •Framework to compare bundle specific parameters derived from dMRI across subjects•Introduction of a new global tractography method called “Plausibility Tracking”•Fast and reliable initialization through probabilistic tractography•More specific results compared to analysis with indices of diffusion tensor
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1053-8119
1095-9572
1095-9572
DOI:10.1016/j.neuroimage.2014.01.002