Single-cell transcriptomics reveals multiple neuronal cell types in human midbrain-specific organoids

Human stem cell-derived organoids have great potential for modelling physiological and pathological processes. They recapitulate in vitro the organization and function of a respective organ or part of an organ. Human midbrain organoids (hMOs) have been described to contain midbrain-specific dopamine...

Full description

Saved in:
Bibliographic Details
Published inCell and tissue research Vol. 382; no. 3; pp. 463 - 476
Main Authors Smits, Lisa M., Magni, Stefano, Kinugawa, Kaoru, Grzyb, Kamil, Luginbühl, Joachim, Sabate-Soler, Sonia, Bolognin, Silvia, Shin, Jay W., Mori, Eiichiro, Skupin, Alexander, Schwamborn, Jens C.
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.12.2020
Springer
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Human stem cell-derived organoids have great potential for modelling physiological and pathological processes. They recapitulate in vitro the organization and function of a respective organ or part of an organ. Human midbrain organoids (hMOs) have been described to contain midbrain-specific dopaminergic neurons that release the neurotransmitter dopamine. However, the human midbrain contains also additional neuronal cell types, which are functionally interacting with each other. Here, we analysed hMOs at high-resolution by means of single-cell RNA sequencing (scRNA-seq), imaging and electrophysiology to unravel cell heterogeneity. Our findings demonstrate that hMOs show essential neuronal functional properties as spontaneous electrophysiological activity of different neuronal subtypes, including dopaminergic, GABAergic, glutamatergic and serotonergic neurons. Recapitulating these in vivo features makes hMOs an excellent tool for in vitro disease phenotyping and drug discovery.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0302-766X
1432-0878
DOI:10.1007/s00441-020-03249-y