Long-term safety of intramuscular gene transfer of non-viral FGF1 for peripheral artery disease

Peripheral artery disease is a progressive disease. Primary ischemic leg symptoms are muscle fatigue, discomfort or pain during ambulation, known as intermittent claudication. The most severe manifestation of peripheral artery disease is critical limb ischemia (CLI). The long-term safety of gene the...

Full description

Saved in:
Bibliographic Details
Published inGene therapy Vol. 19; no. 3; pp. 264 - 270
Main Authors Niebuhr, A, Henry, T, Goldman, J, Baumgartner, I, van Belle, E, Gerss, J, Hirsch, A T, Nikol, S
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.03.2012
Nature Publishing Group
Subjects
Leg
Online AccessGet full text

Cover

Loading…
More Information
Summary:Peripheral artery disease is a progressive disease. Primary ischemic leg symptoms are muscle fatigue, discomfort or pain during ambulation, known as intermittent claudication. The most severe manifestation of peripheral artery disease is critical limb ischemia (CLI). The long-term safety of gene therapy in peripheral artery disease remains unclear. This four center peripheral artery disease registry was designed to evaluate the long-term safety of the intramuscular non-viral fibroblast growth factor-1 ( NV1FGF ), a plasmid-based angiogenic gene for local expression of fibroblast growth factor-1 versus placebo in patients with peripheral artery disease who had been included in five different phase I and II trials. Here we report a 3-year follow-up in patients suffering from CLI or intermittent claudication. There were 93 evaluable patients, 72 of them in Fontaine stage IV (47 NV1FGF versus 25 placebo) and 21 patients in Fontaine stage IIb peripheral artery disease (15 NV1FGF versus 6 placebo). Safety parameters included rates of non-fatal myocardial infarction (MI), stroke, death, cancer, retinopathy and renal dysfunction. At 3 years, in 93 patients included this registry, there was no increase in retinopathy or renal dysfunction associated with delivery of this angiogenic factor. There was also no difference in the number of strokes, MI or deaths, respectively, for NV1FGF versus placebo. In the CLI group, new cancer occurred in two patients in the NV1FGF group. Conclusions that can be drawn from this relatively small patient group are limited because of the number of patients followed and can only be restricted to safety. Yet, data presented may be valuable concerning rates in cancer, retinopathy, MI or strokes following angiogenesis gene therapy in the absence of any long-term data in angiogenesis gene therapy. It may take several years until data from larger patient populations will become available.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0969-7128
1476-5462
DOI:10.1038/gt.2011.85