Modeling aerotaxis band formation in Azospirillum brasilense

Background Bacterial chemotaxis, the ability of motile bacteria to navigate gradients of chemicals, plays key roles in the establishment of various plant-microbe associations, including those that benefit plant growth and crop productivity. The motile soil bacterium Azospirillum brasilense colonizes...

Full description

Saved in:
Bibliographic Details
Published inBMC microbiology Vol. 19; no. 1; pp. 101 - 10
Main Authors Elmas, Mustafa, Alexiades, Vasilios, O’Neal, Lindsey, Alexandre, Gladys
Format Journal Article
LanguageEnglish
Published London BioMed Central 17.05.2019
BioMed Central Ltd
BMC
Subjects
Online AccessGet full text
ISSN1471-2180
1471-2180
DOI10.1186/s12866-019-1468-9

Cover

Loading…
More Information
Summary:Background Bacterial chemotaxis, the ability of motile bacteria to navigate gradients of chemicals, plays key roles in the establishment of various plant-microbe associations, including those that benefit plant growth and crop productivity. The motile soil bacterium Azospirillum brasilense colonizes the rhizosphere and promotes the growth of diverse plants across a range of environments. Aerotaxis, or the ability to navigate oxygen gradients, is a widespread behavior in bacteria. It is one of the strongest behavioral responses in A. brasilense and it is essential for successful colonization of the root surface. Oxygen is one of the limiting nutrients in the rhizosphere where density and activity of organisms are greatest. The aerotaxis response of A. brasilense is also characterized by high precision with motile cells able to detect narrow regions in a gradient where the oxygen concentration is low enough to support their microaerobic lifestyle and metabolism. Results Here, we present a mathematical model for aerotaxis band formation that captures most critical features of aerotaxis in A. brasilense . Remarkably, this model recapitulates experimental observations of the formation of a stable aerotactic band within 2 minutes of exposure to the air gradient that were not captured in previous modeling efforts. Using experimentally determined parameters, the mathematical model reproduced an aerotactic band at a distance from the meniscus and with a width that matched the experimental observation. Conclusions Including experimentally determined parameter values allowed us to validate a mathematical model for aerotactic band formation in spatial gradients that recapitulates the spatiotemporal stability of the band and its position in the gradient as well as its overall width. This validated model also allowed us to capture the range of oxygen concentrations the bacteria prefer during aerotaxis, and to estimate the effect of parameter values (e.g. oxygen consumption rate), both of which are difficult to obtain in experiments.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1471-2180
1471-2180
DOI:10.1186/s12866-019-1468-9