Bone morphogenic protein-2 (BMP-2) loaded hybrid coating on porous hydroxyapatite scaffolds for bone tissue engineering

In this study, a silica xerogel-chitosan hybrid is utilized as a coating material to incorporate bone morphogenic protein-2 (BMP-2) on a porous hydroxyapatite (HA) scaffold for bone tissue engineering. BMP-2 is known as a therapeutic agent for improving bone regeneration and repair. Silica xerogel-c...

Full description

Saved in:
Bibliographic Details
Published inJournal of materials science. Materials in medicine Vol. 24; no. 3; pp. 773 - 782
Main Authors Jun, Shin-Hee, Lee, Eun-Jung, Jang, Tae-Sik, Kim, Hyoun-Ee, Jang, Jun-Hyeog, Koh, Young-Hag
Format Journal Article
LanguageEnglish
Published Boston Springer US 01.03.2013
Springer
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this study, a silica xerogel-chitosan hybrid is utilized as a coating material to incorporate bone morphogenic protein-2 (BMP-2) on a porous hydroxyapatite (HA) scaffold for bone tissue engineering. BMP-2 is known as a therapeutic agent for improving bone regeneration and repair. Silica xerogel-chitosan hybrids have been used for the delivery of a growth factor as well as osteoconductive coatings. The biological properties of the hybrid coating incorporated with BMP-2 were evaluated in terms of the BMP-2 release behavior, osteoblastic cellular responses and in vivo performance. BMP-2 was continuously released from the hybrid coating layer on the porous HA scaffold for up to 6 weeks. The hybrid coating containing BMP-2 showed significantly enhanced osteoblastic cell responses in comparison with the hybrid coating and HA substrate. Consequently, new bone formation was significantly increased within the hybrid coating containing BMP-2. These results reveal that the hybrid coating containing BMP-2 has the potential to be used as a bone implant, whose osteogenic properties are promoted by the release of BMP-2 in a controlled manner for a prolonged period of time.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0957-4530
1573-4838
DOI:10.1007/s10856-012-4822-0