Myocardial Protection Against Pressure Overload in Mice Lacking Bach1, a Transcriptional Repressor of Heme Oxygenase-1

Bach1 is a stress-responsive transcriptional factor that is thought to control the expression levels of cytoprotective factors, including heme-oxygenase (HO)-1. In the present study, we investigated the roles of Bach1 in the development of left ventricular (LV) hypertrophy and remodeling induced by...

Full description

Saved in:
Bibliographic Details
Published inHypertension (Dallas, Tex. 1979) Vol. 51; no. 6; pp. 1570 - 1577
Main Authors Mito, Shinji, Ozono, Ryoji, Oshima, Tetsuya, Yano, Yoko, Watari, Yuichiro, Yamamoto, Yoshiyuki, Brydun, Andrei, Igarashi, Kazuhiko, Yoshizumi, Masao
Format Journal Article
LanguageEnglish
Published Philadelphia, PA American Heart Association, Inc 01.06.2008
Hagerstown, MD Lippincott
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Bach1 is a stress-responsive transcriptional factor that is thought to control the expression levels of cytoprotective factors, including heme-oxygenase (HO)-1. In the present study, we investigated the roles of Bach1 in the development of left ventricular (LV) hypertrophy and remodeling induced by transverse aortic constriction (TAC) in vivo using Bach1 gene-deficient (Bach1) mice. TAC for 3 weeks in wild-type control (Bach1) mice produced LV hypertrophy and remodeling manifested by increased heart weight, histological findings showing increased myocyte cross-sectional area (CSA) and interstitial fibrosis (picro Sirius red staining), reexpressions of ANP, BNP, and βMHC genes, and echocardiographic findings showing wall thickening, LV dilatation, and reduced LV contraction. Deletion of Bach1 caused significant reductions in heart weight (by 16%), CSA (by 36%), tissue collagen content (by 38%), and gene expression levels of ANP (by 75%), BNP (by 45%), and βMHC (by 74%). Echocardiography revealed reduced LV dimension and ameliorated LV contractile function. Deletion of Bach1 in the LV caused marked upregulation of HO-1 protein accompanied by elevated HO activity in both basal or TAC-stimulated conditions. Treatment of Bach1 mice with tin-protoporphyrin, an inhibitor of HO, abolished the antihypertrophic and antiremodeling effects of Bach1 gene ablation. These results suggest that deletion of Bach1 caused upregulation of cytoprotective HO-1, thereby inhibiting TAC-induced LV hypertrophy and remodeling, at least in part, through activation of HO. Bach1 repressively controls myocardial HO-1 expression both in basal and stressed conditions, inhibition of Bach1 may be a novel therapeutic strategy to protect the myocardium from pressure overload.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0194-911X
1524-4563
DOI:10.1161/HYPERTENSIONAHA.107.102566