To Explore the Pathogenesis of Vascular Lesion of Type 2 Diabetes Mellitus Based on the PI3K/Akt Signaling Pathway

Background. Type 2 diabetes mellitus (T2DM) has become a chronic disease, serious harm to human health. Complications of the blood pipe are the main cause of disability and death in diabetic patients, including vascular lesions that directly affects the prognosis of patients with diabetes and surviv...

Full description

Saved in:
Bibliographic Details
Published inJournal of Diabetes Research Vol. 2019; no. 2019; pp. 1 - 11
Main Authors Jiang, Nan-Nan, Jiang, Hui, Han, Li-Ping, Li-Shan, Zhao-Hui, Fang, Zhao-Hui, Qin, Xiu-juan, Gao, Jia-rong, Guo, Ming-Fei
Format Journal Article
LanguageEnglish
Published Cairo, Egypt Hindawi Publishing Corporation 01.01.2019
Hindawi
John Wiley & Sons, Inc
Hindawi Limited
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Background. Type 2 diabetes mellitus (T2DM) has become a chronic disease, serious harm to human health. Complications of the blood pipe are the main cause of disability and death in diabetic patients, including vascular lesions that directly affects the prognosis of patients with diabetes and survival. This study was to determine the influence of high glucose and related mechanism of vascular lesion of type 2 diabetes mellitus pathogenesis. Methods. In vivo aorta abdominalis of GK rats was observed with blood pressure, heart rate, hematoxylin and eosin (H&E), Masson, and Verhoeff staining. In vitro cells were cultured with 30 mM glucose for 24 h. RT-QPCR was used to detect the mRNA expression of endothelial markers PTEN, PI3K, Akt, and VEGF. Immunofluorescence staining was used to detect the expression of PTEN, PI3K, Akt, and VEGF. PI3K and Akt phosphorylation levels were detected by Western blot analysis. Results. Heart rate, systolic blood pressure, diastolic blood pressure, and mean blood pressure in the GK control group were higher compared with the Wistar control group and no difference compared with the GK experimental model group. Fluorescence intensity of VEGF, Akt, and PI3K in the high-sugar stimulus group was stronger than the control group; PTEN in the high-sugar stimulus group was weakening than the control group. VEGF, Akt, and PI3K mRNA in the high-sugar stimulus group were higher than the control group; protein expressions of VEGF, Akt, and PI3K in the high-sugar stimulus group were higher than the control group. PTEN mRNA in the high-sugar stimulus group was lower than the control group. Protein expression of PTEN in the high-sugar stimulus group was lower than the control group. Conclusions. Angiogenesis is an important pathogenesis of T2DM vascular disease, and PTEN plays a negative regulatory role in the development of new blood vessels and can inhibit the PI3K/Akt signaling pathway.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Academic Editor: Bernard Portha
ISSN:2314-6745
2314-6753
DOI:10.1155/2019/4650906