The Activation of the Mirror Neuron System during Action Observation and Action Execution with Mirror Visual Feedback in Stroke: A Systematic Review
Objective. To evaluate the concurrent and training effects of action observation (AO) and action execution with mirror visual feedback (MVF) on the activation of the mirror neuron system (MNS) and its relationship with the activation of the motor cortex in stroke individuals. Methods. A literature s...
Saved in:
Published in | Journal of neural transplantation & plasticity Vol. 2018; no. 2018; pp. 1 - 14 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Cairo, Egypt
Hindawi Publishing Corporation
01.01.2018
Hindawi John Wiley & Sons, Inc Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Objective. To evaluate the concurrent and training effects of action observation (AO) and action execution with mirror visual feedback (MVF) on the activation of the mirror neuron system (MNS) and its relationship with the activation of the motor cortex in stroke individuals. Methods. A literature search using CINAHL, PubMed, PsycINFO, Medline, Web of Science, and SCOPUS to find relevant studies was performed. Results. A total of 19 articles were included. Two functional magnetic resonance imaging (fMRI) studies reported that MVF could activate the ipsilesional primary motor cortex as well as the MNS in stroke individuals, whereas two other fMRI studies found that the MNS was not activated by MVF in stroke individuals. Two clinical trials reported that long-term action execution with MVF induced a shift of activation toward the ipsilesional hemisphere. Five fMRI studies showed that AO activated the MNS, of which, three found the activation of movement-related areas. Five electroencephalography (EEG) studies demonstrated that AO or MVF enhanced mu suppression over the sensorimotor cortex. Conclusions. MVF may contribute to stroke recovery by revising the interhemispheric imbalance caused by stroke due to the activation of the MNS. AO may also promote motor relearning in stroke individuals by activating the MNS and motor cortex. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 content type line 14 ObjectType-Feature-3 ObjectType-Evidence Based Healthcare-1 ObjectType-Article-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 ObjectType-Undefined-4 Academic Editor: Ambra Bisio |
ISSN: | 2090-5904 0792-8483 1687-5443 1687-5443 |
DOI: | 10.1155/2018/2321045 |