Complex population structure of the Atlantic puffin revealed by whole genome analyses
The factors underlying gene flow and genomic population structure in vagile seabirds are notoriously difficult to understand due to their complex ecology with diverse dispersal barriers and extensive periods at sea. Yet, such understanding is vital for conservation management of seabirds that are gl...
Saved in:
Published in | Communications biology Vol. 4; no. 1; pp. 922 - 12 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
29.07.2021
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The factors underlying gene flow and genomic population structure in vagile seabirds are notoriously difficult to understand due to their complex ecology with diverse dispersal barriers and extensive periods at sea. Yet, such understanding is vital for conservation management of seabirds that are globally declining at alarming rates. Here, we elucidate the population structure of the Atlantic puffin (
Fratercula arctica
) by assembling its reference genome and analyzing genome-wide resequencing data of 72 individuals from 12 colonies. We identify four large, genetically distinct clusters, observe isolation-by-distance between colonies within these clusters, and obtain evidence for a secondary contact zone. These observations disagree with the current taxonomy, and show that a complex set of contemporary biotic factors impede gene flow over different spatial scales. Our results highlight the power of whole genome data to reveal unexpected population structure in vagile marine seabirds and its value for seabird taxonomy, evolution and conservation.
Kersten et al. sequence a draft genome for the Atlantic puffin and report its population structure, genetic diversity and gene flow among four main clusters of populations across the northern Atlantic. These results identify a secondary contact zone between the puffins from the High Arctic and other colonies and proposes a new population structure from the currently recognized three subspecies. |
---|---|
Bibliography: | NFR/192141 |
ISSN: | 2399-3642 2399-3642 |
DOI: | 10.1038/s42003-021-02415-4 |