Light-powered Escherichia coli cell division for chemical production

Cell division can perturb the metabolic performance of industrial microbes. The C period of cell division starts from the initiation to the termination of DNA replication, whereas the D period is the bacterial division process. Here, we first shorten the C and D periods of E. coli by controlling the...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 11; no. 1; pp. 2262 - 14
Main Authors Ding, Qiang, Ma, Danlei, Liu, Gao-Qiang, Li, Yang, Guo, Liang, Gao, Cong, Hu, Guipeng, Ye, Chao, Liu, Jia, Liu, Liming, Chen, Xiulai
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 08.05.2020
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Cell division can perturb the metabolic performance of industrial microbes. The C period of cell division starts from the initiation to the termination of DNA replication, whereas the D period is the bacterial division process. Here, we first shorten the C and D periods of E. coli by controlling the expression of the ribonucleotide reductase NrdAB and division proteins FtsZA through blue light and near-infrared light activation, respectively. It increases the specific surface area to 3.7 μm −1 and acetoin titer to 67.2 g·L −1 . Next, we prolong the C and D periods of E. coli by regulating the expression of the ribonucleotide reductase NrdA and division protein inhibitor SulA through blue light activation-repression and near-infrared (NIR) light activation, respectively. It improves the cell volume to 52.6 μm 3 and poly(lactate-co-3-hydroxybutyrate) titer to 14.31 g·L −1 . Thus, the optogenetic-based cell division regulation strategy can improve the efficiency of microbial cell factories. Manipulation of genes controlling microbial shapes can affect bio-production. Here, the authors employ an optogenetic method to realize dynamic morphological engineering of E. coli replication and division and show the increased production of acetoin and poly(lactate-co-3-hydroxybutyrate).
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-020-16154-3