A functional classification of medial frontal negativity ERPs: Theta oscillations and single subject effects

Theta oscillations in the EEG have been linked to several ERPs that are elicited during performance‐monitoring tasks, including the error‐related negativity (ERN), no‐go N2, and the feedback‐related negativity (FRN). We used a novel paradigm to isolate independent components (ICs) in single subjects...

Full description

Saved in:
Bibliographic Details
Published inPsychophysiology Vol. 53; no. 9; pp. 1317 - 1334
Main Authors Van Noordt, Stefon J.R., Campopiano, Allan, Segalowitz, Sidney J.
Format Journal Article
LanguageEnglish
Published United States Blackwell Publishing Ltd 01.09.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Theta oscillations in the EEG have been linked to several ERPs that are elicited during performance‐monitoring tasks, including the error‐related negativity (ERN), no‐go N2, and the feedback‐related negativity (FRN). We used a novel paradigm to isolate independent components (ICs) in single subjects' (n = 27) EEG accounting for a medial frontal negativity (MFN) to response cue stimuli that signal a potential change in future response demands. Medial frontal projecting ICs that were sensitive to these response cues also described the ERNs, no‐go N2s, and, to a lesser extent, the FRNs, that were elicited in letter flanker, go/no‐go, and time‐estimation tasks, respectively. In addition, percentile bootstrap tests using trimmed means indicated that the medial frontal ICs show an increase in theta activity during the ERN, no‐go N2, and FRN across tasks and within individuals. Our results provide an important validation of previous studies by showing that increases in medial frontal theta to cognitively challenging events in multiple paradigms is a reliable effect within individuals and can be elicited by basic stimulus cues that signal the potential need to adjust response control. Thus, medial frontal theta reflects a neural response common to all MFN paradigms and characterizes the general process of controlling attention without the need to induce error commission, inhibited responses, or to present negative feedback.
AbstractList Theta oscillations in the EEG have been linked to several ERPs that are elicited during performance‐monitoring tasks, including the error‐related negativity (ERN), no‐go N2, and the feedback‐related negativity (FRN). We used a novel paradigm to isolate independent components (ICs) in single subjects' ( n  = 27) EEG accounting for a medial frontal negativity (MFN) to response cue stimuli that signal a potential change in future response demands. Medial frontal projecting ICs that were sensitive to these response cues also described the ERNs, no‐go N2s, and, to a lesser extent, the FRNs, that were elicited in letter flanker, go/no‐go, and time‐estimation tasks, respectively. In addition, percentile bootstrap tests using trimmed means indicated that the medial frontal ICs show an increase in theta activity during the ERN, no‐go N2, and FRN across tasks and within individuals. Our results provide an important validation of previous studies by showing that increases in medial frontal theta to cognitively challenging events in multiple paradigms is a reliable effect within individuals and can be elicited by basic stimulus cues that signal the potential need to adjust response control. Thus, medial frontal theta reflects a neural response common to all MFN paradigms and characterizes the general process of controlling attention without the need to induce error commission, inhibited responses, or to present negative feedback.
Theta oscillations in the EEG have been linked to several ERPs that are elicited during performance-monitoring tasks, including the error-related negativity (ERN), no-go N2, and the feedback-related negativity (FRN). We used a novel paradigm to isolate independent components (ICs) in single subjects' (n=27) EEG accounting for a medial frontal negativity (MFN) to response cue stimuli that signal a potential change in future response demands. Medial frontal projecting ICs that were sensitive to these response cues also described the ERNs, no-go N2s, and, to a lesser extent, the FRNs, that were elicited in letter flanker, go/no-go, and time-estimation tasks, respectively. In addition, percentile bootstrap tests using trimmed means indicated that the medial frontal ICs show an increase in theta activity during the ERN, no-go N2, and FRN across tasks and within individuals. Our results provide an important validation of previous studies by showing that increases in medial frontal theta to cognitively challenging events in multiple paradigms is a reliable effect within individuals and can be elicited by basic stimulus cues that signal the potential need to adjust response control. Thus, medial frontal theta reflects a neural response common to all MFN paradigms and characterizes the general process of controlling attention without the need to induce error commission, inhibited responses, or to present negative feedback.
Theta oscillations in the EEG have been linked to several ERPs that are elicited during performance-monitoring tasks, including the error-related negativity (ERN), no-go N2, and the feedback-related negativity (FRN). We used a novel paradigm to isolate independent components (ICs) in single subjects' (n = 27) EEG accounting for a medial frontal negativity (MFN) to response cue stimuli that signal a potential change in future response demands. Medial frontal projecting ICs that were sensitive to these response cues also described the ERNs, no-go N2s, and, to a lesser extent, the FRNs, that were elicited in letter flanker, go/no-go, and time-estimation tasks, respectively. In addition, percentile bootstrap tests using trimmed means indicated that the medial frontal ICs show an increase in theta activity during the ERN, no-go N2, and FRN across tasks and within individuals. Our results provide an important validation of previous studies by showing that increases in medial frontal theta to cognitively challenging events in multiple paradigms is a reliable effect within individuals and can be elicited by basic stimulus cues that signal the potential need to adjust response control. Thus, medial frontal theta reflects a neural response common to all MFN paradigms and characterizes the general process of controlling attention without the need to induce error commission, inhibited responses, or to present negative feedback.Theta oscillations in the EEG have been linked to several ERPs that are elicited during performance-monitoring tasks, including the error-related negativity (ERN), no-go N2, and the feedback-related negativity (FRN). We used a novel paradigm to isolate independent components (ICs) in single subjects' (n = 27) EEG accounting for a medial frontal negativity (MFN) to response cue stimuli that signal a potential change in future response demands. Medial frontal projecting ICs that were sensitive to these response cues also described the ERNs, no-go N2s, and, to a lesser extent, the FRNs, that were elicited in letter flanker, go/no-go, and time-estimation tasks, respectively. In addition, percentile bootstrap tests using trimmed means indicated that the medial frontal ICs show an increase in theta activity during the ERN, no-go N2, and FRN across tasks and within individuals. Our results provide an important validation of previous studies by showing that increases in medial frontal theta to cognitively challenging events in multiple paradigms is a reliable effect within individuals and can be elicited by basic stimulus cues that signal the potential need to adjust response control. Thus, medial frontal theta reflects a neural response common to all MFN paradigms and characterizes the general process of controlling attention without the need to induce error commission, inhibited responses, or to present negative feedback.
Author Campopiano, Allan
Segalowitz, Sidney J.
Van Noordt, Stefon J.R.
Author_xml – sequence: 1
  givenname: Stefon J.R.
  surname: Van Noordt
  fullname: Van Noordt, Stefon J.R.
  organization: Cognitive and Affective Neuroscience Laboratory, Department of Psychology, Brock University, Ontario, St. Catharines, Canada
– sequence: 2
  givenname: Allan
  surname: Campopiano
  fullname: Campopiano, Allan
  organization: Cognitive and Affective Neuroscience Laboratory, Department of Psychology, Brock University, Ontario, St. Catharines, Canada
– sequence: 3
  givenname: Sidney J.
  surname: Segalowitz
  fullname: Segalowitz, Sidney J.
  email: sid.segalowitz@brocku.ca
  organization: Cognitive and Affective Neuroscience Laboratory, Department of Psychology, Brock University, Ontario, St. Catharines, Canada
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27338558$$D View this record in MEDLINE/PubMed
BookMark eNqNkV1rFDEYhYNU7LZ64w-QgDdSmJqPyZd3pdQqFF1qRbwKmUxSs2Yz6yRj3X9vdrfrRRExNwfyPufl5ZwjcJCG5AB4jtEpru_1Kq9Xp5hwqR6BGW65aqSS_ADMEGplw4Qgh-Ao5wVCSGFCnoBDIiiVjMkZiGfQT8mWMCQToY0m5-CDNZsPOHi4dH2oAz8OqVRN7raOfoayhhfX8_wG3nxzxcAh2xDj1pShST3MId1GB_PULZwt0HlfJT8Fj72J2T2712Pw-e3Fzfm75urj5fvzs6vGctqqhqoetVZZT5jF3KDWC0UZZgp3rmfWtJh21tnOCyKtQZJx3vXIyR4x3tPe0WPward3NQ4_JpeLXoZsXb0wuWHKGkvMBEJEyP9BMVEtwriiLx-gi2Eaa2xbCjFChdosfHFPTV0NT6_GsDTjWu8jrwDaAXYcch6d1zaUbXRlNCFqjPSmVb1pVW9brZaTB5b91r_CeAffhejW_yD1_NPX-d7T7DwhF_frj8eM3zUXVDD95cOlZgQzjjDV1_Q3lNDBwA
CitedBy_id crossref_primary_10_1016_j_brainres_2017_07_026
crossref_primary_10_1111_psyp_13856
crossref_primary_10_1007_s12671_019_1096_3
crossref_primary_10_1016_j_bpsc_2024_04_009
crossref_primary_10_1016_j_jneumeth_2020_108961
crossref_primary_10_1016_j_biopsycho_2023_108598
crossref_primary_10_1016_j_bpsc_2024_03_001
crossref_primary_10_1016_j_dcn_2021_100929
crossref_primary_10_1093_scan_nsad009
crossref_primary_10_1111_psyp_13573
crossref_primary_10_3390_brainsci14050506
crossref_primary_10_3758_s13415_017_0546_4
crossref_primary_10_1016_j_biopsycho_2017_09_008
crossref_primary_10_1016_j_ijpsycho_2025_112555
crossref_primary_10_1162_jocn_a_01884
crossref_primary_10_1093_brain_awab345
crossref_primary_10_1016_j_dcn_2021_100995
crossref_primary_10_1016_j_dcn_2024_101500
crossref_primary_10_3389_fpsyg_2018_01420
crossref_primary_10_1111_psyp_13708
crossref_primary_10_1038_srep46651
crossref_primary_10_3389_fnhum_2018_00178
crossref_primary_10_3389_fnsys_2021_611507
crossref_primary_10_1162_jocn_a_02060
crossref_primary_10_1002_dev_21502
crossref_primary_10_1007_s00213_017_4645_2
crossref_primary_10_1016_j_biopsych_2021_08_020
crossref_primary_10_1111_psyp_13208
crossref_primary_10_1111_psyp_14734
crossref_primary_10_1016_j_intell_2021_101569
crossref_primary_10_1016_j_rasd_2017_01_011
crossref_primary_10_1016_j_bbr_2018_03_025
crossref_primary_10_1016_j_neuropsychologia_2021_108020
crossref_primary_10_3758_s13415_017_0539_3
crossref_primary_10_1016_j_ijpsycho_2019_09_015
crossref_primary_10_1016_j_dcn_2019_100665
crossref_primary_10_1111_ejn_14174
crossref_primary_10_1016_j_biopsych_2023_05_006
crossref_primary_10_1523_ENEURO_0061_17_2017
crossref_primary_10_1016_j_neuroimage_2021_118765
crossref_primary_10_1016_j_neuroimage_2019_01_022
crossref_primary_10_1016_j_neubiorev_2021_12_027
crossref_primary_10_1016_j_nicl_2017_11_010
crossref_primary_10_1007_s41465_021_00223_6
crossref_primary_10_1016_j_bandc_2018_08_001
crossref_primary_10_1016_j_brainres_2018_04_021
crossref_primary_10_1016_j_neuroimage_2017_08_032
Cites_doi 10.1523/JNEUROSCI.0802-12.2012
10.1523/JNEUROSCI.4137-08.2009
10.1111/psyp.12040
10.1016/j.brainres.2008.07.114
10.1016/j.jphysparis.2014.04.003
10.1126/science.1066168
10.1016/j.clinph.2004.03.031
10.1016/j.brainres.2007.03.092
10.1016/j.jneumeth.2003.10.009
10.3389/fpsyg.2011.00030
10.1093/cercor/bhs236
10.1073/pnas.0906194107
10.1016/j.neuroimage.2011.09.011
10.1523/JNEUROSCI.5754-12.2013
10.1016/j.neulet.2015.04.009
10.1167/8.12.3
10.1037/0003-066X.53.3.300
10.1016/j.neuroimage.2008.12.038
10.1162/neco.1995.7.6.1129
10.1016/j.neuroimage.2013.08.028
10.1016/j.neubiorev.2012.05.008
10.1016/j.neuroimage.2010.10.033
10.1111/j.1469-8986.2009.00942.x
10.1016/j.clinph.2007.07.023
10.1523/JNEUROSCI.2315-05.2005
10.3389/fpsyg.2011.00107
10.1016/j.cogbrainres.2004.09.006
10.3389/fnhum.2014.00994
10.1016/S0304-3940(02)00288-4
10.1080/03610910903289151
10.1167/13.5.22
10.1523/JNEUROSCI.2565-12.2013
10.1002/hbm.20937
10.3389/fnhum.2012.00197
10.3758/cabn.7.4.367
10.1371/journal.pone.0025591
10.1007/s00429-013-0521-y
10.1093/cercor/bhh125
10.1016/j.clinph.2006.11.009
10.1016/j.neuroimage.2009.05.064
10.3758/BF03203267
10.1016/j.ijpsycho.2007.05.017
10.1097/00001756-199903170-00003
10.1093/oxfordhb/9780195374148.001.0001
10.1016/s0304-3940(99)00679-5
10.1016/j.tics.2011.12.008
10.1007/s10548-014-0361-y
10.1016/j.neuroimage.2016.09.054
10.1037/1082-989X.8.3.254
10.1523/JNEUROSCI.5421-13.2014
10.1016/j.neuroimage.2013.08.058
10.1016/j.neuroimage.2015.05.085
10.1523/JNEUROSCI.4652-10.2011
10.1152/jn.00358.2009
10.1038/nn.4071
10.1016/s1388-2457(01)00691-5
10.1016/j.clinph.2011.03.030
10.1016/S0031-9384(02)00930-7
10.1016/j.neuroimage.2009.11.080
10.1152/jn.00479.2013
10.1126/science.1100301
10.1016/j.neuroimage.2013.08.054
10.1098/rstb.1999.0469
10.1006/nimg.2001.0923
10.1073/pnas.1504196112
10.3389/fnhum.2010.00210
10.1016/j.neuroimage.2010.02.005
10.1111/j.1469-8986.2011.01293.x
10.1109/5.939827
10.1016/j.neuroimage.2015.04.021
10.1111/j.1467-9280.1993.tb00586.x
10.1016/j.cortex.2007.08.013
10.1523/JNEUROSCI.6352-11.2012
10.1016/j.tics.2004.03.008
10.1155/2011/156869
10.1016/j.tics.2015.02.004
ContentType Journal Article
Copyright 2016 Society for Psychophysiological Research
2016 Society for Psychophysiological Research.
Copyright_xml – notice: 2016 Society for Psychophysiological Research
– notice: 2016 Society for Psychophysiological Research.
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TK
K9.
7X8
DOI 10.1111/psyp.12689
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Neurosciences Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
Neurosciences Abstracts
MEDLINE - Academic
DatabaseTitleList CrossRef
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic

Neurosciences Abstracts
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1469-8986
1540-5958
EndPage 1334
ExternalDocumentID 4143545491
27338558
10_1111_psyp_12689
PSYP12689
ark_67375_WNG_52156013_R
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Natural Sciences and Engineering Council of Canada
  funderid: 122222‐2013
– fundername: Canadian Foundation for Innovation
  funderid: 8780
GroupedDBID ---
--Z
-DZ
-~X
.3N
.55
.GA
.GJ
.Y3
05W
0R~
10A
123
186
1OB
1OC
29P
2QV
31~
33P
36B
4.4
50Y
50Z
51W
51Y
52M
52O
52Q
52R
52S
52T
52U
52V
52W
53G
5HH
5LA
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A04
AABNI
AAESR
AAHHS
AAONW
AAOUF
AASGY
AAXRX
AAYJJ
AAZKR
ABCQN
ABCUV
ABDBF
ABDPE
ABEML
ABGDZ
ABITZ
ABIVO
ABJNI
ABLJU
ABPPZ
ABPVW
ABQWH
ABSOO
ABXGK
ACAHQ
ACBKW
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACHQT
ACMXC
ACNCT
ACPOU
ACPRK
ACQPF
ACSCC
ACWUS
ACXQS
ADBBV
ADBTR
ADEMA
ADEOM
ADIZJ
ADKYN
ADMGS
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFNX
AFFPM
AFGKR
AFKFF
AFPWT
AFZJQ
AHBTC
AHEFC
AHMBA
AIACR
AIAGR
AIFKG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ASTYK
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BMXJE
BNVMJ
BQESF
BROTX
BRXPI
BSCLL
BY8
CAG
COF
CS3
D-6
D-7
D-C
D-D
DC6
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSSH
DU5
DXH
EAD
EAP
EBC
EBD
EBS
EJD
EMB
EMK
EMOBN
EPS
ESX
F00
F01
F5P
FEDTE
FUBAC
FZ0
G-S
G.N
G50
GODZA
HAOEW
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
KBYEO
L7B
LATKE
LC2
LC4
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LPU
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSSH
MSFUL
MSMAN
MSSSH
MVM
MXFUL
MXMAN
MXSSH
N04
N06
N9A
NEJ
NF~
O66
O9-
OHT
OIG
OVD
P2W
P2Y
P2Z
P4B
P4C
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RCA
RIG
RIWAO
RJQFR
ROL
RX1
S10
SAMSI
SUPJJ
SV3
TEORI
TN5
TUS
UAP
UB1
V8K
VQA
W8V
W99
WBKPD
WH7
WHDPE
WIH
WII
WIJ
WOHZO
WQZ
WRC
WSUWO
WXI
WXSBR
X7M
XG1
XJT
XOL
XSW
YNT
YYM
YYP
YZZ
ZCA
ZGI
ZWS
ZXP
ZZTAW
~IA
~WP
AAHQN
AAIPD
AAMNL
AANHP
AAYCA
ABVKB
ACRPL
ACUHS
ACYXJ
ADNMO
AFWVQ
AFYRF
ALVPJ
AAYXX
ADXHL
AETEA
AEYWJ
AGHNM
AGQPQ
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
VXZ
YIF
YIN
Z5M
7TK
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
K9.
7X8
ID FETCH-LOGICAL-c6349-39d04c9cf25c16a04f79351591bed5ca413bcecbf728ca08566bd0e8d056d3de3
IEDL.DBID DR2
ISSN 0048-5772
1469-8986
IngestDate Fri Jul 11 13:46:07 EDT 2025
Fri Jul 11 03:55:44 EDT 2025
Sun Jul 13 02:58:20 EDT 2025
Wed Feb 19 02:43:30 EST 2025
Thu Apr 24 23:11:08 EDT 2025
Tue Jul 01 01:48:24 EDT 2025
Wed Jan 22 16:35:34 EST 2025
Wed Oct 30 09:56:29 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords Robust estimation
Performance monitoring
Medial frontal cortex
Theta
Independent component analysis
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2016 Society for Psychophysiological Research.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c6349-39d04c9cf25c16a04f79351591bed5ca413bcecbf728ca08566bd0e8d056d3de3
Notes ArticleID:PSYP12689
ark:/67375/WNG-52156013-R
Canadian Foundation for Innovation - No. 8780
Natural Sciences and Engineering Council of Canada - No. 122222-2013
istex:2B7E20200E260B447E9B416884CC211140364478
This work was made possible by funding from the Canadian Foundation for Innovation (grant number 8780) and the Natural Sciences and Engineering Council of Canada (NSERC; grant number 122222‐2013) to SJS, NSERC Postgraduate Scholarship Doctoral Award to SJRV, and the facilities of the Shared Hierarchical Academic Research Computing Network and Compute/Calcul Canada. SJRV and SJS designed the study, SJRV and AC performed the experiments and data analyses, and SJRV, AC, and SJS wrote the manuscript.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 27338558
PQID 1810523798
PQPubID 41359
PageCount 18
ParticipantIDs proquest_miscellaneous_1815700278
proquest_miscellaneous_1811294011
proquest_journals_1810523798
pubmed_primary_27338558
crossref_citationtrail_10_1111_psyp_12689
crossref_primary_10_1111_psyp_12689
wiley_primary_10_1111_psyp_12689_PSYP12689
istex_primary_ark_67375_WNG_52156013_R
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2016
PublicationDateYYYYMMDD 2016-09-01
PublicationDate_xml – month: 09
  year: 2016
  text: September 2016
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Oxford
PublicationTitle Psychophysiology
PublicationTitleAlternate Psychophysiol
PublicationYear 2016
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References Maurer, U., Brem, S., Liechti, M., Maurizio, S., Michels, L., & Brandeis, D. (2014). Frontal midline theta reflects individual task performance in a working memory task. Brain Topography, 127-134. doi: 10.1007/s10548-014-0361-y
Palmer, J. A., Kreutz-Delgado, K., & Makeig, S. (2011). AMICA: An adaptive mixture of independent component analyzers with shared components (Technical report). San Diego, CA: Swartz Center for Computational Neuroscience.
Makeig, S., Debener, S., Onton, J., & Delorme, A. (2004). Mining event-related brain dynamics. Trends in Cognitive Sciences, 8(5), 204-210. doi: 10.1016/j.tics.2004.03.008
Wilcox, R. R. (1998). How many discoveries have been lost by ignoring modern statistical methods? American Psychologist, 53(3), 300-314.
Segalowitz, S. J., Santesso, D. L., Murphy, T. I., Homan, D., Chantziantoniou, D. K., & Khan, S. (2010). Retest reliability of medial frontal negativities during performance monitoring. Psychophysiology, 47(2), 260-270. doi: 10.1111/j.1469-8986.2009.00942.x
Weissman, D. H., Gopalakrishnan, A., Hazlett, C. J., & Woldorff, M. G. (2005). Dorsal anterior cingulate cortex resolves conflict from distracting stimuli by boosting attention toward relevant events. Cerebral Cortex, 15(2), 229-237. doi: 10.1093/cercor/bhh125
Cohen, M. X., & Donner, T. H. (2013). Midfrontal conflict-related theta-band power reflects neural oscillations that predict behavior. Journal of Neurophysiology, 110(12), 2752-2763. doi: 10.1152/jn.00479.2013
Bokura, H., Yamaguchi, S., & Kobayashi, S. (2001). Electrophysiological correlates for response inhibition in a go/nogo task. Clinical Neurophysiology, 112(12), 2224-2232. doi: 10.1016/s1388-2457(01)00691-5
Nigbur, R., Ivanova, G., & Stürmer, B. (2011). Theta power as a marker for cognitive interference. Clinical Neurophysiology, 122(11), 2185-2194. doi: 10.1016/j.clinph.2011.03.030
Voytek, B., Kayser, A. S., Badre, D., Fegen, D., Chang, E. F., Crone, N. E., ... D'Esposito, M. (2015). Oscillatory dynamics coordinating human frontal networks in support of goal maintenance. Nature Neuroscience, 18, 1318-1324. doi: 10.1038/nn.4071
Cohen, M. X., Ridderinkhof, K. R., Haupt, S., Elger, C. E., & Fell, J. (2008). Medial frontal cortex and response conflict: Evidence from human intracranial EEG and medial frontal cortex lesion. Brain Research, 1238, 127-142. doi: 10.1016/j.brainres.2008.07.114
Cavanagh, J. F., Zambrano-Vazquez, L., & Allen, J. J. B. (2012). Theta lingua franca: A common mid-frontal substrate for action monitoring processes. Psychophysiology, 49(2), 220-238. doi: 10.1111/j.1469-8986.2011.01293.x
Lavallee, C. F., Meemken, M. T., Herrmann, C. S., & Huster, R. J. (2014). When holding your horses meets the deer in the headlights: Time-frequency characteristics of global and selective stopping under conditions of proactive and reactive control. Frontiers in Human Neuroscience, 8, 1-12. doi: 10.3389/fnhum.2014.00994
Womelsdorf, T., Johnston, K., Vinck, M., & Everling, S. (2010). Theta-activity in anterior cingulate cortex predicts task rules and their adjustments following errors. Proceedings of the National Academy of Sciences of the USA, 107(11), 5248-5253. doi: 10.1073/pnas.0906194107
Oostenveld, R., Fries, P., Maris, E., & Schoffelen, J.-M. (2011). FieldTrip: Open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Computational Intelligence and Neuroscience, 156869. doi: 10.1155/2011/156869
Holroyd, C. B., & Coles, M. G. H. (2008). Dorsal anterior cingulate cortex integrates reinforcement history to guide voluntary behavior. Cortex, 44(5), 548-559. doi: 10.1016/j.cortex.2007.08.013
Delorme, A., & Makeig, S. (2004). EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. Journal of Neuroscience Methods, 134(1), 9-21. doi: 10.1016/j.jneumeth.2003.10.009
Cristofori, I., Moretti, L., Harquel, S., Posada, A., Deiana, G., Isnard, J., ... Sirigu, A. (2013). Theta signal as the neural signature of social exclusion. Cerebral Cortex, 23(10), 2437-2447. doi: 10.1093/cercor/bhs236
Cavanagh, J. F., Frank, M. J., Klein, T. J., & Allen, J. J. B. (2010). Frontal theta links prediction errors to behavioral adaptation in reinforcement learning. NeuroImage, 49(4), 3198-3209. doi: 10.1016/j.neuroimage.2009.11.080
Tsujimoto, T., Shimazu, H., Isomura, Y., & Sasaki, K. (2010). Theta oscillations in primate prefrontal and anterior cingulate cortices in forewarned reaction time tasks. Journal of Neurophysiology, 103(2), 827-843. doi: 10.1152/jn.00358.2009
Bell, A. J., & Sejnowski, T. J. (1995). An information-maximization approach to blind separation and blind deconvolution. Neural Computation, 7(6), 1129-1159. doi: 10.1162/neco.1995.7.6.1129
Gentsch, A., Ullsperger, P., & Ullsperger, M. (2009). Dissociable medial frontal negativities from a common monitoring system for self- and externally caused failure of goal achievement. NeuroImage, 47(4), 2023-2030. doi: 10.1016/j.neuroimage.2009.05.064
Luu, P., Tucker, D. M., & Stripling, R. (2007). Neural mechanisms for learning actions in context. Brain Research, 1179, 89-105. doi: 10.1016/j.brainres.2007.03.092
Meltzer, J. A., Negishi, M., Mayes, L. C., & Constable, R. T. (2007). Individual differences in EEG theta and alpha dynamics during working memory correlate with fMRI responses across subjects. Clinical Neurophysiology, 118(11), 2419-2436. doi: 10.1016/j.clinph.2007.07.023
Walsh, M. M., & Anderson, J. R. (2012). Learning from experience: Event-related potential correlates of reward processing, neural adaptation, and behavioral choice. Neuroscience and Biobehavioral Reviews, 36(8), 1870-1884. doi: 10.1016/j.neubiorev.2012.05.008
Wessel, J. R., Danielmeier, C., Morton, J. B., & Ullsperger, M. (2012). Surprise and error: Common neuronal architecture for the processing of errors and novelty. Journal of Neuroscience, 32(22), 7528-7537. doi: 10.1523/JNEUROSCI.6352-11.2012
Jung, T.-P., Makeig, S., McKeown, M. J., Bell, A. J., Lee, T.-W., & Sejnowski, T. J. (2001). Imaging brain dynamics using independent component analysis. Proceedings of the IEEE, 89(7), 1107-1122. doi: 10.1109/5.939827
Groppe, D., Makeig, S., & Kutas, M. (2009). Identifying reliable independent components via split-half comparisons. NeuroImage, 45(4), 1199-1211. doi: 10.1016/j.neuroimage.2008.12.038
Scheeringa, R., Bastiaansen, M. C. M., Petersson, K. M., Oostenveld, R., Norris, D. G., & Hagoort, P. (2008). Frontal theta EEG activity correlates negatively with the default mode network in resting state. International Journal of Psychophysiology, 67(3), 242-251. doi: 10.1016/j.ijpsycho.2007.05.017
Womelsdorf, T., Vinck, M., Leung, L. S., & Everling, S. (2010). Selective theta-synchronization of choice-relevant information subserves goal-directed behavior. Frontiers in Human Neuroscience, 4, 210. doi: 10.3389/fnhum.2010.00210
Ishii, R., Shinosaki, K., Ukai, S., Inouye, T., Ishihara, T., Yoshimine, T., ... Takeda, M. (1999). Medial prefrontal cortex generates frontal midline theta rhythm. NeuroReport, 10(4), 675-679. doi: 10.1097/00001756-199903170-00003
Hoffmann, S., Labrenz, F., & Beste, C. (2014). Crosslinking EEG time-frequency decomposition and fMRI in error monitoring. Brain Structure & Function, 219, 595-605. doi: 10.1007/s00429-013-0521-y
Ridderinkhof, K. R., Ullsperger, M., Crone, E. A, & Nieuwenhuis, S. (2004). The role of the medial frontal cortex in cognitive control. Science, 306(5695), 443-447. doi: 10.1126/science.1100301
Isomura, Y., Ito, Y., Akazawa, T., Nambu, A., & Takada, M. (2003). Neural coding of "attention for action" and "response selection" in primate anterior cingulate cortex. Journal of Neuroscience, 23(22), 8002-8012. doi: 10.1523/JNEUROSCI.4652-10.2011
Wessel, J. R., & Ullsperger, M. (2011). Selection of independent components representing event-related brain potentials: A data-driven approach for greater objectivity. NeuroImage, 54(3), 2105-2115. doi: 10.1016/j.neuroimage.2010.10.033
Rousselet, G. A., & Pernet, C. R. (2011). Quantifying the time course of visual object processing using ERPs: It's time to up the game. Frontiers in Psychology, 2, 107. doi: 10.3389/fpsyg.2011.00107
Asada, H., Fukuda, Y., Tsunoda, S., Yamaguchi, M., & Tonoike, M. (1999). Frontal midline theta rhythms reflect alternative activation of prefrontal cortex and anterior cingulate cortex in humans. Neuroscience Letters, 274(1), 29-32. doi: 10.1016/s0304-3940(99)00679-5
Ma, J., Liu, C., & Chen, X. (2015). Emotional conflict processing induce boosted theta oscillation. Neuroscience Letters, 595, 69-73. doi: 10.1016/j.neulet.2015.04.009
Gehring, W. J., Goss, B., Coles, M. G. H., Meyer, D. E., & Donchin, E. (1993). A neural system for error detection and compensation. Psychological Science, 4(6), 385-390. doi: 10.1111/j.1467-9280.1993.tb00586.x
Holroyd, C. B., & Yeung, N. (2012). Motivation of extended behaviors by anterior cingulate cortex. Trends in Cognitive Sciences, 16(2), 122-128. doi: 10.1016/j.tics.2011.12.008
van Noordt, S. J. R., White, L. O., Wu, J., Mayes, L. C., & Crowley, M. J. (2015). Social exclusion modulates event-related frontal theta and tracks ostracism distress in children. NeuroImage, 118, 248-255. doi: 10.1016/j.neuroimage.2015.05.085
Cohen, M. X., & Cavanagh, J. F. (2011). Single-trial regression elucidates the role of prefrontal theta oscillations in response conflict. Frontiers in Psychology, 2, 30. doi: 10.3389/fpsyg.2011.00030
Hoffmann, S., & Falkenstein, M. (2010). Independent component analysis of erroneous and correct responses suggests online response control. Human Brain Mapping, 31(9), 1305-1315. doi: 10.1002/hbm.20937
Reinhart, R. M. G., Zhu, J., Park, S., & Woodman, G. F. (2015). Synchronizing theta oscillations with direct-current stimulation strengthens adaptive control in the human brain. Proceedings of the National Academy of Sciences, 112(30), 201504196. doi: 10.1073/pnas.1504196112
Wilcox, R. R. (2012). Introduction to robust estimation. San Diego, CA: Academic Press
1974; 16
2009; 45
2009; 47
2014; 219
2010; 107
2013; 23
2004; 8
2010; 103
2008; 8
2011; 54
2015; 109
2012; 16
2012; 59
2001; 89
2008; 1238
2005; 22
1993; 4
2005; 25
2004; 134
2013; 13
2013; 50
2003; 8
2007; 1179
2008; 67
2007; 7
1999; 10
2013; 110
2014; 8
1998; 10
2001; 14
1998; 53
2010; 4
2011; 122
2010; 31
2015; 19
2011; 2
2015; 18
2012
2011
2002; 295
2002; 77
2008
2005
2014; 85
2012; 36
2004; 306
2014; 84
2011; 6
2012; 32
2009; 29
1995; 7
2001; 112
2010; 49
2007; 118
2004; 115
2010; 47
2013; 33
2015; 114
2015; 595
2015; 112
1999; 274
2002; 325
2016
2008; 44
2012; 49
2014
1999; 354
2015; 118
2012; 6
2005; 15
2014; 34
2009; 38
2010; 51
2013; 84C
2003; 23
e_1_2_6_51_1
e_1_2_6_74_1
e_1_2_6_53_1
e_1_2_6_76_1
e_1_2_6_32_1
e_1_2_6_70_1
e_1_2_6_30_1
e_1_2_6_72_1
Wilcox R. R. (e_1_2_6_77_1) 2012
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_59_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_17_1
e_1_2_6_55_1
e_1_2_6_78_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_57_1
e_1_2_6_62_1
e_1_2_6_64_1
e_1_2_6_43_1
e_1_2_6_81_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_60_1
Wilcox R. R. (e_1_2_6_75_1) 2005
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_7_1
Palmer J. A. (e_1_2_6_49_1) 2011
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_22_1
e_1_2_6_66_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_47_1
e_1_2_6_68_1
e_1_2_6_52_1
e_1_2_6_73_1
e_1_2_6_54_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_50_1
e_1_2_6_71_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_56_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_58_1
e_1_2_6_79_1
e_1_2_6_63_1
e_1_2_6_42_1
e_1_2_6_65_1
e_1_2_6_21_1
e_1_2_6_80_1
e_1_2_6_40_1
e_1_2_6_61_1
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_48_1
Jung T.‐P. (e_1_2_6_33_1) 1998; 10
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_67_1
e_1_2_6_27_1
e_1_2_6_46_1
e_1_2_6_69_1
References_xml – reference: Carter, C. S., & van Veen, V. (2007). Anterior cingulate cortex and conflict detection: An update of theory and data. Cognitive, Affective & Behavioral Neuroscience, 7(4), 367-379. doi: 10.3758/cabn.7.4.367
– reference: Groppe, D., Makeig, S., & Kutas, M. (2009). Identifying reliable independent components via split-half comparisons. NeuroImage, 45(4), 1199-1211. doi: 10.1016/j.neuroimage.2008.12.038
– reference: Isomura, Y., Ito, Y., Akazawa, T., Nambu, A., & Takada, M. (2003). Neural coding of "attention for action" and "response selection" in primate anterior cingulate cortex. Journal of Neuroscience, 23(22), 8002-8012. doi: 10.1523/JNEUROSCI.4652-10.2011
– reference: Wilcox, R. R. (2005). Introduction to robust estimation and hypothesis testing (2nd ed.). Amsterdam, Netherlands: Elsevier.
– reference: Jung, T.-P., Makeig, S., McKeown, M. J., Bell, A. J., Lee, T.-W., & Sejnowski, T. J. (2001). Imaging brain dynamics using independent component analysis. Proceedings of the IEEE, 89(7), 1107-1122. doi: 10.1109/5.939827
– reference: Liu, Z.-X., Woltering, S., & Lewis, M. D. (2014). Developmental change in EEG theta activity in the medial prefrontal cortex during response control. NeuroImage, 85(Pt 2), 873-887. doi: 10.1016/j.neuroimage.2013.08.054
– reference: Davis, K. D., Taylor, K. S., Hutchison, W. D., Dostrovsky, J. O., McAndrews, M. P., Richter, E. O., & Lozano, A. M. (2005). Human anterior cingulate cortex neurons encode cognitive and emotional demands. Journal of Neuroscience, 25(37), 8402-8406. doi: 10.1523/JNEUROSCI.2315-05.2005
– reference: Makeig, S., Westerfield, M., Jung, T. P., Enghoff, S., Townsend, J., Courchesne, E., & Sejnowski, T. J. (2002). Dynamic brain sources of visual evoked responses. Science, 295(5555), 690-694. doi: 10.1126/science.1066168
– reference: Silvetti, M., Nuñez Castellar, E., Roger, C., & Verguts, T. (2014). Reward expectation and prediction error in human medial frontal cortex: An EEG study. NeuroImage, 84, 376-382. doi: 10.1016/j.neuroimage.2013.08.058
– reference: Wilcox, R. R. (2012). Introduction to robust estimation. San Diego, CA: Academic Press.
– reference: Walsh, M. M., & Anderson, J. R. (2012). Learning from experience: Event-related potential correlates of reward processing, neural adaptation, and behavioral choice. Neuroscience and Biobehavioral Reviews, 36(8), 1870-1884. doi: 10.1016/j.neubiorev.2012.05.008
– reference: Eriksen, B. A., & Eriksen, C. W. (1974). Effects of noise letters upon the identification of a target letter in a nonsearch task. Perception & Psychophysics, 16(1), 143-149. doi: 10.3758/BF03203267
– reference: Wessel, J. R., & Ullsperger, M. (2011). Selection of independent components representing event-related brain potentials: A data-driven approach for greater objectivity. NeuroImage, 54(3), 2105-2115. doi: 10.1016/j.neuroimage.2010.10.033
– reference: Hoffmann, S., Labrenz, F., & Beste, C. (2014). Crosslinking EEG time-frequency decomposition and fMRI in error monitoring. Brain Structure & Function, 219, 595-605. doi: 10.1007/s00429-013-0521-y
– reference: Bell, A. J., & Sejnowski, T. J. (1995). An information-maximization approach to blind separation and blind deconvolution. Neural Computation, 7(6), 1129-1159. doi: 10.1162/neco.1995.7.6.1129
– reference: Luu, P., Tucker, D. M., & Makeig, S. (2004). Frontal midline theta and the error-related negativity: Neurophysiological mechanisms of action regulation. Clinical Neurophysiology, 115(8), 1821-1835. doi: 10.1016/j.clinph.2004.03.031
– reference: Ruchsow, M., Grothe, J., Spitzer, M., & Kiefer, M. (2002). Human anterior cingulate cortex is activated by negative feedback: Evidence from event-related potentials in a guessing task. Neuroscience Letters, 325(3), 203-206.doi: 10.1016/S0304-3940(02)00288-4
– reference: Segalowitz, S. J., Santesso, D. L., Murphy, T. I., Homan, D., Chantziantoniou, D. K., & Khan, S. (2010). Retest reliability of medial frontal negativities during performance monitoring. Psychophysiology, 47(2), 260-270. doi: 10.1111/j.1469-8986.2009.00942.x
– reference: Desjardins, J. A., & Segalowitz, S. J. (2013). Deconstructing the early visual electrocortical responses to face and house stimuli. Journal of Vision, 13(5), 1-18. doi: 10.1167/13.5.22
– reference: van Veen, V., Cohen, J. D., Botvinick, M. M., Stenger, V. A., & Carter, C. S. (2001). Anterior cingulate cortex, conflict monitoring, and levels of processing. NeuroImage, 14(6), 1302-1308. doi: 10.1006/nimg.2001.0923
– reference: van Driel, J., Ridderinkhof, K. R., & Cohen, M. X. (2012). Not all errors are alike: Theta and alpha EEG dynamics relate to differences in error-processing dynamics. Journal of Neuroscience, 32(47), 16795-16806. doi: 10.1523/JNEUROSCI.0802-12.2012
– reference: Makeig, S., Westerfield, M., Townsend, J., Jung, T. P., Courchesne, E., & Sejnowski, T. J. (1999). Functionally independent components of early event-related potentials in a visual spatial attention task. Philosophical Transactions of the Royal Society of London, 354(1387), 1135-1144. doi: 10.1098/rstb.1999.0469
– reference: Rousselet, G. A., & Pernet, C. R. (2011). Quantifying the time course of visual object processing using ERPs: It's time to up the game. Frontiers in Psychology, 2, 107. doi: 10.3389/fpsyg.2011.00107
– reference: Asada, H., Fukuda, Y., Tsunoda, S., Yamaguchi, M., & Tonoike, M. (1999). Frontal midline theta rhythms reflect alternative activation of prefrontal cortex and anterior cingulate cortex in humans. Neuroscience Letters, 274(1), 29-32. doi: 10.1016/s0304-3940(99)00679-5
– reference: Voytek, B., Kayser, A. S., Badre, D., Fegen, D., Chang, E. F., Crone, N. E., ... D'Esposito, M. (2015). Oscillatory dynamics coordinating human frontal networks in support of goal maintenance. Nature Neuroscience, 18, 1318-1324. doi: 10.1038/nn.4071
– reference: Roger, C., Bénar, C. G., Vidal, F., Hasbroucq, T., & Burle, B. (2010). Rostral cingulate zone and correct response monitoring: ICA and source localization evidences for the unicity of correct- and error-negativities. NeuroImage, 51(1), 391-403. doi: 10.1016/j.neuroimage.2010.02.005
– reference: Makeig, S., Debener, S., Onton, J., & Delorme, A. (2004). Mining event-related brain dynamics. Trends in Cognitive Sciences, 8(5), 204-210. doi: 10.1016/j.tics.2004.03.008
– reference: Delorme, A., & Makeig, S. (2004). EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. Journal of Neuroscience Methods, 134(1), 9-21. doi: 10.1016/j.jneumeth.2003.10.009
– reference: Holroyd, C. B., & Yeung, N. (2012). Motivation of extended behaviors by anterior cingulate cortex. Trends in Cognitive Sciences, 16(2), 122-128. doi: 10.1016/j.tics.2011.12.008
– reference: Tsujimoto, T., Shimazu, H., Isomura, Y., & Sasaki, K. (2010). Theta oscillations in primate prefrontal and anterior cingulate cortices in forewarned reaction time tasks. Journal of Neurophysiology, 103(2), 827-843. doi: 10.1152/jn.00358.2009
– reference: van Veen, V., & Carter, C. S. (2002). The anterior cingulate as a conflict monitor: fMRI and ERP studies. Physiology and Behavior, 77(4-5), 477-482. doi: 10.1016/S0031-9384(02)00930-7
– reference: Debener, S., Makeig, S., Delorme, A., & Engel, A. K. (2005). What is novel in the novelty oddball paradigm? Functional significance of the novelty P3 event-related potential as revealed by independent component analysis. Cognitive Brain Research, 22(3), 309-321. doi: 10.1016/j.cogbrainres.2004.09.006
– reference: Meltzer, J. A., Negishi, M., Mayes, L. C., & Constable, R. T. (2007). Individual differences in EEG theta and alpha dynamics during working memory correlate with fMRI responses across subjects. Clinical Neurophysiology, 118(11), 2419-2436. doi: 10.1016/j.clinph.2007.07.023
– reference: Lavallee, C. F., Meemken, M. T., Herrmann, C. S., & Huster, R. J. (2014). When holding your horses meets the deer in the headlights: Time-frequency characteristics of global and selective stopping under conditions of proactive and reactive control. Frontiers in Human Neuroscience, 8, 1-12. doi: 10.3389/fnhum.2014.00994
– reference: Gruendler, T. O. J., Ullsperger, M., & Huster, R. J. (2011). Event-related potential correlates of performance-monitoring in a lateralized time-estimation task. PLOS ONE, 6(10), e25591. doi: 10.1371/journal.pone.0025591
– reference: Cavanagh, J. F., & Shackman, A. J. (2015). Frontal midline theta reflects anxiety and cognitive control: Meta-analytic evidence. Journal of Physiology Paris, 109(1-3), 31-35. doi: 10.1016/j.jphysparis.2014.04.003
– reference: Cavanagh, J. F., Cohen, M. X., & Allen, J. J. B. (2009). Prelude to and resolution of an error: EEG phase synchrony reveals cognitive control dynamics during action monitoring. Journal of Neuroscience, 29(1), 98-105. doi: 10.1523/JNEUROSCI.4137-08.2009
– reference: Hauser, T. U., Iannaccone, R., Stämpfli, P., Drechsler, R., Brandeis, D., Walitza, S., & Brem, S. (2013). The feedback-related negativity (FRN) revisited: New insights into the localization, meaning and network organization. NeuroImage, 84C, 159-168. doi: 10.1016/j.neuroimage.2013.08.028
– reference: Cristofori, I., Moretti, L., Harquel, S., Posada, A., Deiana, G., Isnard, J., ... Sirigu, A. (2013). Theta signal as the neural signature of social exclusion. Cerebral Cortex, 23(10), 2437-2447. doi: 10.1093/cercor/bhs236
– reference: Rousselet, G. A., Husk, J. S., Bennett, P. J., & Sekuler, A. B. (2008). Time course and robustness of ERP object and face differences. Journal of Vision, 8(3), 1-18. doi: 10.1167/8.12.3
– reference: Gentsch, A., Ullsperger, P., & Ullsperger, M. (2009). Dissociable medial frontal negativities from a common monitoring system for self- and externally caused failure of goal achievement. NeuroImage, 47(4), 2023-2030. doi: 10.1016/j.neuroimage.2009.05.064
– reference: van Noordt, S. J. R., & Segalowitz, S. J. (2012). Performance monitoring and the medial prefrontal cortex: A review of individual differences and context effects as a window on self-regulation. Frontiers in Human Neuroscience, 6, 1-16. doi: 10.3389/fnhum.2012.00197
– reference: Ishii, R., Shinosaki, K., Ukai, S., Inouye, T., Ishihara, T., Yoshimine, T., ... Takeda, M. (1999). Medial prefrontal cortex generates frontal midline theta rhythm. NeuroReport, 10(4), 675-679. doi: 10.1097/00001756-199903170-00003
– reference: Reinhart, R. M. G., Zhu, J., Park, S., & Woodman, G. F. (2015). Synchronizing theta oscillations with direct-current stimulation strengthens adaptive control in the human brain. Proceedings of the National Academy of Sciences, 112(30), 201504196. doi: 10.1073/pnas.1504196112
– reference: Bokura, H., Yamaguchi, S., & Kobayashi, S. (2001). Electrophysiological correlates for response inhibition in a go/nogo task. Clinical Neurophysiology, 112(12), 2224-2232. doi: 10.1016/s1388-2457(01)00691-5
– reference: Gehring, W. J., Goss, B., Coles, M. G. H., Meyer, D. E., & Donchin, E. (1993). A neural system for error detection and compensation. Psychological Science, 4(6), 385-390. doi: 10.1111/j.1467-9280.1993.tb00586.x
– reference: Hoffmann, S., & Falkenstein, M. (2010). Independent component analysis of erroneous and correct responses suggests online response control. Human Brain Mapping, 31(9), 1305-1315. doi: 10.1002/hbm.20937
– reference: Jung, T.-P., Humphries, C., Lee, T., & Makeig, S. (1998). Extended ICA removes artifacts from electroencephalographic recordings. Advances in Neural Information Processing Systems, 10, 894-900.
– reference: Weissman, D. H., Gopalakrishnan, A., Hazlett, C. J., & Woldorff, M. G. (2005). Dorsal anterior cingulate cortex resolves conflict from distracting stimuli by boosting attention toward relevant events. Cerebral Cortex, 15(2), 229-237. doi: 10.1093/cercor/bhh125
– reference: Trujillo, L. T., & Allen, J. J. B. (2007). Theta EEG dynamics of the error-related negativity. Clinical Neurophysiology, 118(3), 645-668. doi: 10.1016/j.clinph.2006.11.009
– reference: Wilk, H. A., Ezekiel, F., & Morton, J. B. (2012). Brain regions associated with moment-to-moment adjustments in control and stable task-set maintenance. NeuroImage, 59(2), 1960-1967. doi: 10.1016/j.neuroimage.2011.09.011
– reference: Womelsdorf, T., Johnston, K., Vinck, M., & Everling, S. (2010). Theta-activity in anterior cingulate cortex predicts task rules and their adjustments following errors. Proceedings of the National Academy of Sciences of the USA, 107(11), 5248-5253. doi: 10.1073/pnas.0906194107
– reference: Scheeringa, R., Bastiaansen, M. C. M., Petersson, K. M., Oostenveld, R., Norris, D. G., & Hagoort, P. (2008). Frontal theta EEG activity correlates negatively with the default mode network in resting state. International Journal of Psychophysiology, 67(3), 242-251. doi: 10.1016/j.ijpsycho.2007.05.017
– reference: Cavanagh, J. F., Zambrano-Vazquez, L., & Allen, J. J. B. (2012). Theta lingua franca: A common mid-frontal substrate for action monitoring processes. Psychophysiology, 49(2), 220-238. doi: 10.1111/j.1469-8986.2011.01293.x
– reference: Clayton, M. S., Yeung, N., & Cohen Kadosh, R. (2015). The roles of cortical oscillations in sustained attention. Trends in Cognitive Sciences, 19, 188-195. doi: 10.1016/j.tics.2015.02.004
– reference: Ma, J., Liu, C., & Chen, X. (2015). Emotional conflict processing induce boosted theta oscillation. Neuroscience Letters, 595, 69-73. doi: 10.1016/j.neulet.2015.04.009
– reference: Cavanagh, J. F., Eisenberg, I., Guitart-Masip, M., Huys, Q., & Frank, M. J. (2013). Frontal theta overrides Pavlovian learning biases. Journal of Neuroscience, 33(19), 8541-8548. doi: 10.1523/JNEUROSCI.5754-12.2013
– reference: van Noordt, S. J. R., White, L. O., Wu, J., Mayes, L. C., & Crowley, M. J. (2015). Social exclusion modulates event-related frontal theta and tracks ostracism distress in children. NeuroImage, 118, 248-255. doi: 10.1016/j.neuroimage.2015.05.085
– reference: Palmer, J. A., Kreutz-Delgado, K., & Makeig, S. (2011). AMICA: An adaptive mixture of independent component analyzers with shared components (Technical report). San Diego, CA: Swartz Center for Computational Neuroscience.
– reference: van Noordt, S. J. R., Desjardins, J. A., & Segalowitz, S. J. (2015). Watch out! Medial frontal cortex is activated by cues signaling potential changes in response demands. NeuroImage, 114, 356-370. doi: 10.1016/j.neuroimage.2015.04.021
– reference: Holroyd, C. B., & Coles, M. G. H. (2008). Dorsal anterior cingulate cortex integrates reinforcement history to guide voluntary behavior. Cortex, 44(5), 548-559. doi: 10.1016/j.cortex.2007.08.013
– reference: Wessel, J. R., Danielmeier, C., Morton, J. B., & Ullsperger, M. (2012). Surprise and error: Common neuronal architecture for the processing of errors and novelty. Journal of Neuroscience, 32(22), 7528-7537. doi: 10.1523/JNEUROSCI.6352-11.2012
– reference: Cohen, M. X., & Donner, T. H. (2013). Midfrontal conflict-related theta-band power reflects neural oscillations that predict behavior. Journal of Neurophysiology, 110(12), 2752-2763. doi: 10.1152/jn.00479.2013
– reference: Luu, P., Tucker, D. M., & Stripling, R. (2007). Neural mechanisms for learning actions in context. Brain Research, 1179, 89-105. doi: 10.1016/j.brainres.2007.03.092
– reference: Oostenveld, R., Fries, P., Maris, E., & Schoffelen, J.-M. (2011). FieldTrip: Open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Computational Intelligence and Neuroscience, 156869. doi: 10.1155/2011/156869
– reference: Cohen, M. X., & Cavanagh, J. F. (2011). Single-trial regression elucidates the role of prefrontal theta oscillations in response conflict. Frontiers in Psychology, 2, 30. doi: 10.3389/fpsyg.2011.00030
– reference: Wilcox, R. R., & Keselman, H. J. (2003). Modern robust data analysis methods: Measures of central tendency. Psychological Methods, 8(3), 254-274. doi: 10.1037/1082-989X.8.3.254
– reference: Cavanagh, J. F., Frank, M. J., Klein, T. J., & Allen, J. J. B. (2010). Frontal theta links prediction errors to behavioral adaptation in reinforcement learning. NeuroImage, 49(4), 3198-3209. doi: 10.1016/j.neuroimage.2009.11.080
– reference: Cohen, M. X., Ridderinkhof, K. R., Haupt, S., Elger, C. E., & Fell, J. (2008). Medial frontal cortex and response conflict: Evidence from human intracranial EEG and medial frontal cortex lesion. Brain Research, 1238, 127-142. doi: 10.1016/j.brainres.2008.07.114
– reference: Reinhart, R. M. G., & Woodman, G. F. (2014). Causal control of medial-frontal cortex governs electrophysiological and behavioral indices of performance monitoring and learning. Journal of Neuroscience, 34(12), 4214-4227. doi: 10.1523/JNEUROSCI.5421-13.2014
– reference: Wilcox, R. R. (1998). How many discoveries have been lost by ignoring modern statistical methods? American Psychologist, 53(3), 300-314.
– reference: Ridderinkhof, K. R., Ullsperger, M., Crone, E. A, & Nieuwenhuis, S. (2004). The role of the medial frontal cortex in cognitive control. Science, 306(5695), 443-447. doi: 10.1126/science.1100301
– reference: Wilcox, R. R. (2009). Comparing Pearson correlations: Dealing with heteroscedasticity and non-normality. Communications in Statistics-Simulation and Computation, 38(10), 2220-2234. doi: 10.1080/03610910903289151
– reference: Luft, C. D. B., Nolte, G., & Bhattacharya, J. (2013). High-learners present larger mid-frontal theta power and connectivity in response to incorrect performance feedback. Journal of Neuroscience, 33(5), 2029-2038. doi: 10.1523/JNEUROSCI.2565-12.2013
– reference: Nigbur, R., Ivanova, G., & Stürmer, B. (2011). Theta power as a marker for cognitive interference. Clinical Neurophysiology, 122(11), 2185-2194. doi: 10.1016/j.clinph.2011.03.030
– reference: Hajihosseini, A., & Holroyd, C. B. (2013). Frontal midline theta and N200 amplitude reflect complementary information about expectancy and outcome evaluation. Psychophysiology, 50(6), 550-562. doi: 10.1111/psyp.12040
– reference: Maurer, U., Brem, S., Liechti, M., Maurizio, S., Michels, L., & Brandeis, D. (2014). Frontal midline theta reflects individual task performance in a working memory task. Brain Topography, 127-134. doi: 10.1007/s10548-014-0361-y
– reference: Womelsdorf, T., Vinck, M., Leung, L. S., & Everling, S. (2010). Selective theta-synchronization of choice-relevant information subserves goal-directed behavior. Frontiers in Human Neuroscience, 4, 210. doi: 10.3389/fnhum.2010.00210
– year: 2011
– volume: 47
  start-page: 260
  issue: 2
  year: 2010
  end-page: 270
  article-title: Retest reliability of medial frontal negativities during performance monitoring
  publication-title: Psychophysiology
– volume: 107
  start-page: 5248
  issue: 11
  year: 2010
  end-page: 5253
  article-title: Theta‐activity in anterior cingulate cortex predicts task rules and their adjustments following errors
  publication-title: Proceedings of the National Academy of Sciences of the USA
– volume: 19
  start-page: 188
  year: 2015
  end-page: 195
  article-title: The roles of cortical oscillations in sustained attention
  publication-title: Trends in Cognitive Sciences
– volume: 118
  start-page: 2419
  issue: 11
  year: 2007
  end-page: 2436
  article-title: Individual differences in EEG theta and alpha dynamics during working memory correlate with fMRI responses across subjects
  publication-title: Clinical Neurophysiology
– volume: 295
  start-page: 690
  issue: 5555
  year: 2002
  end-page: 694
  article-title: Dynamic brain sources of visual evoked responses
  publication-title: Science
– volume: 54
  start-page: 2105
  issue: 3
  year: 2011
  end-page: 2115
  article-title: Selection of independent components representing event‐related brain potentials: A data‐driven approach for greater objectivity
  publication-title: NeuroImage
– year: 2005
– volume: 84C
  start-page: 159
  year: 2013
  end-page: 168
  article-title: The feedback‐related negativity (FRN) revisited: New insights into the localization, meaning and network organization
  publication-title: NeuroImage
– volume: 32
  start-page: 7528
  issue: 22
  year: 2012
  end-page: 7537
  article-title: Surprise and error: Common neuronal architecture for the processing of errors and novelty
  publication-title: Journal of Neuroscience
– volume: 49
  start-page: 3198
  issue: 4
  year: 2010
  end-page: 3209
  article-title: Frontal theta links prediction errors to behavioral adaptation in reinforcement learning
  publication-title: NeuroImage
– volume: 10
  start-page: 675
  issue: 4
  year: 1999
  end-page: 679
  article-title: Medial prefrontal cortex generates frontal midline theta rhythm
  publication-title: NeuroReport
– volume: 112
  start-page: 201504196
  issue: 30
  year: 2015
  article-title: Synchronizing theta oscillations with direct‐current stimulation strengthens adaptive control in the human brain
  publication-title: Proceedings of the National Academy of Sciences
– volume: 325
  start-page: 203
  issue: 3
  year: 2002
  end-page: 206
  article-title: Human anterior cingulate cortex is activated by negative feedback: Evidence from event‐related potentials in a guessing task
  publication-title: Neuroscience Letters
– volume: 1179
  start-page: 89
  year: 2007
  end-page: 105
  article-title: Neural mechanisms for learning actions in context
  publication-title: Brain Research
– volume: 2
  start-page: 107
  year: 2011
  article-title: Quantifying the time course of visual object processing using ERPs: It's time to up the game
  publication-title: Frontiers in Psychology
– volume: 49
  start-page: 220
  issue: 2
  year: 2012
  end-page: 238
  article-title: Theta lingua franca: A common mid‐frontal substrate for action monitoring processes
  publication-title: Psychophysiology
– volume: 1238
  start-page: 127
  year: 2008
  end-page: 142
  article-title: Medial frontal cortex and response conflict: Evidence from human intracranial EEG and medial frontal cortex lesion
  publication-title: Brain Research
– volume: 15
  start-page: 229
  issue: 2
  year: 2005
  end-page: 237
  article-title: Dorsal anterior cingulate cortex resolves conflict from distracting stimuli by boosting attention toward relevant events
  publication-title: Cerebral Cortex
– volume: 47
  start-page: 2023
  issue: 4
  year: 2009
  end-page: 2030
  article-title: Dissociable medial frontal negativities from a common monitoring system for self‐ and externally caused failure of goal achievement
  publication-title: NeuroImage
– volume: 53
  start-page: 300
  issue: 3
  year: 1998
  end-page: 314
  article-title: How many discoveries have been lost by ignoring modern statistical methods?
  publication-title: American Psychologist
– volume: 89
  start-page: 1107
  issue: 7
  year: 2001
  end-page: 1122
  article-title: Imaging brain dynamics using independent component analysis
  publication-title: Proceedings of the IEEE
– volume: 84
  start-page: 376
  year: 2014
  end-page: 382
  article-title: Reward expectation and prediction error in human medial frontal cortex: An EEG study
  publication-title: NeuroImage
– volume: 118
  start-page: 645
  issue: 3
  year: 2007
  end-page: 668
  article-title: Theta EEG dynamics of the error‐related negativity
  publication-title: Clinical Neurophysiology
– volume: 103
  start-page: 827
  issue: 2
  year: 2010
  end-page: 843
  article-title: Theta oscillations in primate prefrontal and anterior cingulate cortices in forewarned reaction time tasks
  publication-title: Journal of Neurophysiology
– volume: 51
  start-page: 391
  issue: 1
  year: 2010
  end-page: 403
  article-title: Rostral cingulate zone and correct response monitoring: ICA and source localization evidences for the unicity of correct‐ and error‐negativities
  publication-title: NeuroImage
– volume: 50
  start-page: 550
  issue: 6
  year: 2013
  end-page: 562
  article-title: Frontal midline theta and N200 amplitude reflect complementary information about expectancy and outcome evaluation
  publication-title: Psychophysiology
– volume: 31
  start-page: 1305
  issue: 9
  year: 2010
  end-page: 1315
  article-title: Independent component analysis of erroneous and correct responses suggests online response control
  publication-title: Human Brain Mapping
– volume: 6
  start-page: 1
  year: 2012
  end-page: 16
  article-title: Performance monitoring and the medial prefrontal cortex: A review of individual differences and context effects as a window on self‐regulation
  publication-title: Frontiers in Human Neuroscience
– volume: 112
  start-page: 2224
  issue: 12
  year: 2001
  end-page: 2232
  article-title: Electrophysiological correlates for response inhibition in a go/nogo task
  publication-title: Clinical Neurophysiology
– volume: 109
  start-page: 31
  issue: 1–3
  year: 2015
  end-page: 35
  article-title: Frontal midline theta reflects anxiety and cognitive control: Meta‐analytic evidence
  publication-title: Journal of Physiology Paris
– volume: 14
  start-page: 1302
  issue: 6
  year: 2001
  end-page: 1308
  article-title: Anterior cingulate cortex, conflict monitoring, and levels of processing
  publication-title: NeuroImage
– volume: 22
  start-page: 309
  issue: 3
  year: 2005
  end-page: 321
  article-title: What is novel in the novelty oddball paradigm? Functional significance of the novelty P3 event‐related potential as revealed by independent component analysis
  publication-title: Cognitive Brain Research
– volume: 354
  start-page: 1135
  issue: 1387
  year: 1999
  end-page: 1144
  article-title: Functionally independent components of early event‐related potentials in a visual spatial attention task
  publication-title: Philosophical Transactions of the Royal Society of London
– volume: 110
  start-page: 2752
  issue: 12
  year: 2013
  end-page: 2763
  article-title: Midfrontal conflict‐related theta‐band power reflects neural oscillations that predict behavior
  publication-title: Journal of Neurophysiology
– volume: 274
  start-page: 29
  issue: 1
  year: 1999
  end-page: 32
  article-title: Frontal midline theta rhythms reflect alternative activation of prefrontal cortex and anterior cingulate cortex in humans
  publication-title: Neuroscience Letters
– volume: 6
  start-page: e25591
  issue: 10
  year: 2011
  article-title: Event‐related potential correlates of performance‐monitoring in a lateralized time‐estimation task
  publication-title: PLOS ONE
– volume: 2
  start-page: 30
  year: 2011
  article-title: Single‐trial regression elucidates the role of prefrontal theta oscillations in response conflict
  publication-title: Frontiers in Psychology
– start-page: 1
  year: 2008
  end-page: 53
– volume: 118
  start-page: 248
  year: 2015
  end-page: 255
  article-title: Social exclusion modulates event‐related frontal theta and tracks ostracism distress in children
  publication-title: NeuroImage
– volume: 16
  start-page: 122
  issue: 2
  year: 2012
  end-page: 128
  article-title: Motivation of extended behaviors by anterior cingulate cortex
  publication-title: Trends in Cognitive Sciences
– volume: 122
  start-page: 2185
  issue: 11
  year: 2011
  end-page: 2194
  article-title: Theta power as a marker for cognitive interference
  publication-title: Clinical Neurophysiology
– volume: 45
  start-page: 1199
  issue: 4
  year: 2009
  end-page: 1211
  article-title: Identifying reliable independent components via split‐half comparisons
  publication-title: NeuroImage
– volume: 59
  start-page: 1960
  issue: 2
  year: 2012
  end-page: 1967
  article-title: Brain regions associated with moment‐to‐moment adjustments in control and stable task‐set maintenance
  publication-title: NeuroImage
– volume: 18
  start-page: 1318
  year: 2015
  end-page: 1324
  article-title: Oscillatory dynamics coordinating human frontal networks in support of goal maintenance
  publication-title: Nature Neuroscience
– start-page: 156869
  year: 2011
  article-title: FieldTrip: Open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data
  publication-title: Computational Intelligence and Neuroscience
– volume: 8
  start-page: 204
  issue: 5
  year: 2004
  end-page: 210
  article-title: Mining event‐related brain dynamics
  publication-title: Trends in Cognitive Sciences
– volume: 8
  start-page: 1
  issue: 3
  year: 2008
  end-page: 18
  article-title: Time course and robustness of ERP object and face differences
  publication-title: Journal of Vision
– volume: 34
  start-page: 4214
  issue: 12
  year: 2014
  end-page: 4227
  article-title: Causal control of medial‐frontal cortex governs electrophysiological and behavioral indices of performance monitoring and learning
  publication-title: Journal of Neuroscience
– volume: 306
  start-page: 443
  issue: 5695
  year: 2004
  end-page: 447
  article-title: The role of the medial frontal cortex in cognitive control
  publication-title: Science
– volume: 13
  start-page: 1
  issue: 5
  year: 2013
  end-page: 18
  article-title: Deconstructing the early visual electrocortical responses to face and house stimuli
  publication-title: Journal of Vision
– volume: 33
  start-page: 8541
  issue: 19
  year: 2013
  end-page: 8548
  article-title: Frontal theta overrides Pavlovian learning biases
  publication-title: Journal of Neuroscience
– start-page: 127
  year: 2014
  end-page: 134
  article-title: Frontal midline theta reflects individual task performance in a working memory task
  publication-title: Brain Topography
– volume: 10
  start-page: 894
  year: 1998
  end-page: 900
  article-title: Extended ICA removes artifacts from electroencephalographic recordings
  publication-title: Advances in Neural Information Processing Systems
– volume: 7
  start-page: 1129
  issue: 6
  year: 1995
  end-page: 1159
  article-title: An information‐maximization approach to blind separation and blind deconvolution
  publication-title: Neural Computation
– volume: 115
  start-page: 1821
  issue: 8
  year: 2004
  end-page: 1835
  article-title: Frontal midline theta and the error‐related negativity: Neurophysiological mechanisms of action regulation
  publication-title: Clinical Neurophysiology
– volume: 67
  start-page: 242
  issue: 3
  year: 2008
  end-page: 251
  article-title: Frontal theta EEG activity correlates negatively with the default mode network in resting state
  publication-title: International Journal of Psychophysiology
– volume: 134
  start-page: 9
  issue: 1
  year: 2004
  end-page: 21
  article-title: EEGLAB: An open source toolbox for analysis of single‐trial EEG dynamics including independent component analysis
  publication-title: Journal of Neuroscience Methods
– volume: 25
  start-page: 8402
  issue: 37
  year: 2005
  end-page: 8406
  article-title: Human anterior cingulate cortex neurons encode cognitive and emotional demands
  publication-title: Journal of Neuroscience
– volume: 4
  start-page: 385
  issue: 6
  year: 1993
  end-page: 390
  article-title: A neural system for error detection and compensation
  publication-title: Psychological Science
– year: 2016
– volume: 77
  start-page: 477
  issue: 4–5
  year: 2002
  end-page: 482
  article-title: The anterior cingulate as a conflict monitor: fMRI and ERP studies
  publication-title: Physiology and Behavior
– volume: 219
  start-page: 595
  year: 2014
  end-page: 605
  article-title: Crosslinking EEG time–frequency decomposition and fMRI in error monitoring
  publication-title: Brain Structure & Function
– year: 2012
– volume: 23
  start-page: 8002
  issue: 22
  year: 2003
  end-page: 8012
  article-title: Neural coding of “attention for action” and “response selection” in primate anterior cingulate cortex
  publication-title: Journal of Neuroscience
– volume: 44
  start-page: 548
  issue: 5
  year: 2008
  end-page: 559
  article-title: Dorsal anterior cingulate cortex integrates reinforcement history to guide voluntary behavior
  publication-title: Cortex
– volume: 85
  start-page: 873
  issue: Pt 2
  year: 2014
  end-page: 887
  article-title: Developmental change in EEG theta activity in the medial prefrontal cortex during response control
  publication-title: NeuroImage
– volume: 114
  start-page: 356
  year: 2015
  end-page: 370
  article-title: Watch out! Medial frontal cortex is activated by cues signaling potential changes in response demands
  publication-title: NeuroImage
– volume: 36
  start-page: 1870
  issue: 8
  year: 2012
  end-page: 1884
  article-title: Learning from experience: Event‐related potential correlates of reward processing, neural adaptation, and behavioral choice
  publication-title: Neuroscience and Biobehavioral Reviews
– volume: 29
  start-page: 98
  issue: 1
  year: 2009
  end-page: 105
  article-title: Prelude to and resolution of an error: EEG phase synchrony reveals cognitive control dynamics during action monitoring
  publication-title: Journal of Neuroscience
– volume: 16
  start-page: 143
  issue: 1
  year: 1974
  end-page: 149
  article-title: Effects of noise letters upon the identification of a target letter in a nonsearch task
  publication-title: Perception & Psychophysics
– volume: 8
  start-page: 254
  issue: 3
  year: 2003
  end-page: 274
  article-title: Modern robust data analysis methods: Measures of central tendency
  publication-title: Psychological Methods
– volume: 23
  start-page: 2437
  issue: 10
  year: 2013
  end-page: 2447
  article-title: Theta signal as the neural signature of social exclusion
  publication-title: Cerebral Cortex
– volume: 33
  start-page: 2029
  issue: 5
  year: 2013
  end-page: 2038
  article-title: High‐learners present larger mid‐frontal theta power and connectivity in response to incorrect performance feedback
  publication-title: Journal of Neuroscience
– volume: 38
  start-page: 2220
  issue: 10
  year: 2009
  end-page: 2234
  article-title: Comparing Pearson correlations: Dealing with heteroscedasticity and non‐normality
  publication-title: Communications in Statistics—Simulation and Computation
– volume: 7
  start-page: 367
  issue: 4
  year: 2007
  end-page: 379
  article-title: Anterior cingulate cortex and conflict detection: An update of theory and data
  publication-title: Cognitive, Affective & Behavioral Neuroscience
– volume: 595
  start-page: 69
  year: 2015
  end-page: 73
  article-title: Emotional conflict processing induce boosted theta oscillation
  publication-title: Neuroscience Letters
– volume: 8
  start-page: 1
  year: 2014
  end-page: 12
  article-title: When holding your horses meets the deer in the headlights: Time‐frequency characteristics of global and selective stopping under conditions of proactive and reactive control
  publication-title: Frontiers in Human Neuroscience
– volume: 4
  start-page: 210
  year: 2010
  article-title: Selective theta‐synchronization of choice‐relevant information subserves goal‐directed behavior
  publication-title: Frontiers in Human Neuroscience
– volume: 32
  start-page: 16795
  issue: 47
  year: 2012
  end-page: 16806
  article-title: Not all errors are alike: Theta and alpha EEG dynamics relate to differences in error‐processing dynamics
  publication-title: Journal of Neuroscience
– ident: e_1_2_6_62_1
  doi: 10.1523/JNEUROSCI.0802-12.2012
– ident: e_1_2_6_6_1
  doi: 10.1523/JNEUROSCI.4137-08.2009
– ident: e_1_2_6_25_1
  doi: 10.1111/psyp.12040
– volume-title: Introduction to robust estimation
  year: 2012
  ident: e_1_2_6_77_1
– ident: e_1_2_6_14_1
  doi: 10.1016/j.brainres.2008.07.114
– ident: e_1_2_6_9_1
  doi: 10.1016/j.jphysparis.2014.04.003
– ident: e_1_2_6_43_1
  doi: 10.1126/science.1066168
– ident: e_1_2_6_38_1
  doi: 10.1016/j.clinph.2004.03.031
– ident: e_1_2_6_39_1
  doi: 10.1016/j.brainres.2007.03.092
– ident: e_1_2_6_18_1
  doi: 10.1016/j.jneumeth.2003.10.009
– ident: e_1_2_6_12_1
  doi: 10.3389/fpsyg.2011.00030
– ident: e_1_2_6_15_1
  doi: 10.1093/cercor/bhs236
– ident: e_1_2_6_80_1
  doi: 10.1073/pnas.0906194107
– ident: e_1_2_6_79_1
  doi: 10.1016/j.neuroimage.2011.09.011
– ident: e_1_2_6_7_1
  doi: 10.1523/JNEUROSCI.5754-12.2013
– ident: e_1_2_6_40_1
  doi: 10.1016/j.neulet.2015.04.009
– ident: e_1_2_6_54_1
  doi: 10.1167/8.12.3
– ident: e_1_2_6_74_1
  doi: 10.1037/0003-066X.53.3.300
– ident: e_1_2_6_23_1
  doi: 10.1016/j.neuroimage.2008.12.038
– ident: e_1_2_6_3_1
  doi: 10.1162/neco.1995.7.6.1129
– ident: e_1_2_6_26_1
  doi: 10.1016/j.neuroimage.2013.08.028
– ident: e_1_2_6_70_1
  doi: 10.1016/j.neubiorev.2012.05.008
– ident: e_1_2_6_73_1
  doi: 10.1016/j.neuroimage.2010.10.033
– ident: e_1_2_6_58_1
  doi: 10.1111/j.1469-8986.2009.00942.x
– ident: e_1_2_6_46_1
  doi: 10.1016/j.clinph.2007.07.023
– ident: e_1_2_6_16_1
  doi: 10.1523/JNEUROSCI.2315-05.2005
– ident: e_1_2_6_55_1
  doi: 10.3389/fpsyg.2011.00107
– ident: e_1_2_6_17_1
  doi: 10.1016/j.cogbrainres.2004.09.006
– ident: e_1_2_6_35_1
  doi: 10.3389/fnhum.2014.00994
– ident: e_1_2_6_56_1
  doi: 10.1016/S0304-3940(02)00288-4
– ident: e_1_2_6_76_1
  doi: 10.1080/03610910903289151
– ident: e_1_2_6_19_1
  doi: 10.1167/13.5.22
– ident: e_1_2_6_37_1
  doi: 10.1523/JNEUROSCI.2565-12.2013
– volume: 10
  start-page: 894
  year: 1998
  ident: e_1_2_6_33_1
  article-title: Extended ICA removes artifacts from electroencephalographic recordings
  publication-title: Advances in Neural Information Processing Systems
– ident: e_1_2_6_27_1
  doi: 10.1002/hbm.20937
– ident: e_1_2_6_65_1
  doi: 10.3389/fnhum.2012.00197
– ident: e_1_2_6_5_1
  doi: 10.3758/cabn.7.4.367
– ident: e_1_2_6_24_1
  doi: 10.1371/journal.pone.0025591
– ident: e_1_2_6_28_1
  doi: 10.1007/s00429-013-0521-y
– ident: e_1_2_6_71_1
  doi: 10.1093/cercor/bhh125
– ident: e_1_2_6_60_1
  doi: 10.1016/j.clinph.2006.11.009
– ident: e_1_2_6_22_1
  doi: 10.1016/j.neuroimage.2009.05.064
– ident: e_1_2_6_20_1
  doi: 10.3758/BF03203267
– ident: e_1_2_6_57_1
  doi: 10.1016/j.ijpsycho.2007.05.017
– ident: e_1_2_6_31_1
  doi: 10.1097/00001756-199903170-00003
– ident: e_1_2_6_42_1
  doi: 10.1093/oxfordhb/9780195374148.001.0001
– ident: e_1_2_6_2_1
  doi: 10.1016/s0304-3940(99)00679-5
– ident: e_1_2_6_30_1
  doi: 10.1016/j.tics.2011.12.008
– ident: e_1_2_6_45_1
  doi: 10.1007/s10548-014-0361-y
– ident: e_1_2_6_63_1
  doi: 10.1016/j.neuroimage.2016.09.054
– ident: e_1_2_6_78_1
  doi: 10.1037/1082-989X.8.3.254
– ident: e_1_2_6_50_1
  doi: 10.1523/JNEUROSCI.5421-13.2014
– ident: e_1_2_6_59_1
  doi: 10.1016/j.neuroimage.2013.08.058
– ident: e_1_2_6_66_1
  doi: 10.1016/j.neuroimage.2015.05.085
– ident: e_1_2_6_32_1
  doi: 10.1523/JNEUROSCI.4652-10.2011
– ident: e_1_2_6_61_1
  doi: 10.1152/jn.00358.2009
– volume-title: AMICA: An adaptive mixture of independent component analyzers with shared components (Technical report)
  year: 2011
  ident: e_1_2_6_49_1
– ident: e_1_2_6_69_1
  doi: 10.1038/nn.4071
– ident: e_1_2_6_4_1
  doi: 10.1016/s1388-2457(01)00691-5
– ident: e_1_2_6_47_1
  doi: 10.1016/j.clinph.2011.03.030
– ident: e_1_2_6_67_1
  doi: 10.1016/S0031-9384(02)00930-7
– ident: e_1_2_6_8_1
  doi: 10.1016/j.neuroimage.2009.11.080
– ident: e_1_2_6_13_1
  doi: 10.1152/jn.00479.2013
– ident: e_1_2_6_52_1
  doi: 10.1126/science.1100301
– ident: e_1_2_6_36_1
  doi: 10.1016/j.neuroimage.2013.08.054
– ident: e_1_2_6_44_1
  doi: 10.1098/rstb.1999.0469
– ident: e_1_2_6_68_1
  doi: 10.1006/nimg.2001.0923
– ident: e_1_2_6_51_1
  doi: 10.1073/pnas.1504196112
– ident: e_1_2_6_81_1
  doi: 10.3389/fnhum.2010.00210
– ident: e_1_2_6_53_1
  doi: 10.1016/j.neuroimage.2010.02.005
– ident: e_1_2_6_10_1
  doi: 10.1111/j.1469-8986.2011.01293.x
– ident: e_1_2_6_34_1
  doi: 10.1109/5.939827
– volume-title: Introduction to robust estimation and hypothesis testing
  year: 2005
  ident: e_1_2_6_75_1
– ident: e_1_2_6_64_1
  doi: 10.1016/j.neuroimage.2015.04.021
– ident: e_1_2_6_21_1
  doi: 10.1111/j.1467-9280.1993.tb00586.x
– ident: e_1_2_6_29_1
  doi: 10.1016/j.cortex.2007.08.013
– ident: e_1_2_6_72_1
  doi: 10.1523/JNEUROSCI.6352-11.2012
– ident: e_1_2_6_41_1
  doi: 10.1016/j.tics.2004.03.008
– ident: e_1_2_6_48_1
  doi: 10.1155/2011/156869
– ident: e_1_2_6_11_1
  doi: 10.1016/j.tics.2015.02.004
SSID ssj0009122
Score 2.3995867
Snippet Theta oscillations in the EEG have been linked to several ERPs that are elicited during performance‐monitoring tasks, including the error‐related negativity...
Theta oscillations in the EEG have been linked to several ERPs that are elicited during performance-monitoring tasks, including the error-related negativity...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1317
SubjectTerms Adult
Classification
Electroencephalography
Evoked Potentials - physiology
Executive Function - physiology
Female
Frontal Lobe - physiology
Humans
Independent component analysis
Male
Medial frontal cortex
Neuropsychology
Performance monitoring
Psychomotor Performance - physiology
Robust estimation
Theta
Theta Rhythm - physiology
Young Adult
Title A functional classification of medial frontal negativity ERPs: Theta oscillations and single subject effects
URI https://api.istex.fr/ark:/67375/WNG-52156013-R/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fpsyp.12689
https://www.ncbi.nlm.nih.gov/pubmed/27338558
https://www.proquest.com/docview/1810523798
https://www.proquest.com/docview/1811294011
https://www.proquest.com/docview/1815700278
Volume 53
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Za9wwEBYheelLr_TYNg0qLYEWvNiWJdulL5tjGwoNy7ah6UMROvOQrXeJd6Hpr--MfOQgBNonGzQ2sjxjfRp_-oaQt8qlZcJsFiUZV1EmCh6VJldR7lwM_uyEDtUavhyJw-Ps8wk_WSMfu70wjT5En3DDyAjfawxwpesrQb6oLxbDJBUF7t5DshYioumldlSZtFLhWRFxwJCtNinSeC4vvTYbbeDA_r4Nal5HrmHqGT8gP7tON4yTs-FqqYfmzw09x_99qofkfotJ6ahxokdkzVWPyeaogvX4rwu6QwNLNKTfN8lsRHEqbDKI1CD2RrJReL907mmzE4V61EWAY-VO2_oU9GA6qT9QcMuloqigOWtZeFRVlmLGYuZovdKYF6Ity-QJOR4ffNs7jNqKDZERLCsjVto4M6XxKTeJUHHmIfwRMSXaWW4UzJjaOKN9nhZGAdoTQtvYFRZgmGXWsadkvZpX7jmhLvXMi5K7OHYZt0x5ZbU2xpVaM-7NgLzr3pw0rZw5VtWYyW5Zg0Mpw1AOyJvedtGIeNxqtRMcoDdR52dIe8u5_H70SQLOwdUrk9MB2eo8RLYRX0tASphhz8tiQF73zRCr-ANGVW6-CjYAr2BFm9xpgyUH0hzu86zxvr5DADVZwTm0vA8-dMfDyMnXH5Nw9uJfjF-Se4AIRUOi2yLry_OVewWoa6m3ycZod393vB2i7C9J3ivz
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF5Be4ALr_IIFFgEqgSSI9vrXXu5RaglQBtFoRXtabUvc2hwojqRKL-emfUmpaiqBCdb8tjyrme834w_f0PIG-1zmTFXJFnBdVKIiifSljopvU_Bn70woVvDwUgMj4rPx_w4cnPwX5hOH2JdcMPICO9rDHAsSP8R5fP2fN7PclHJm2QTW3qHjGpyoR4lsygWXlQJBxQZ1UmRyHNx7qX1aBOn9udVYPMydg2Lz97drsNqGzQLkXNy2l8uTN_--kvR8b_HdY_cibCUDjo_uk9u-OYB2Ro0kJL_OKc7NBBFQwV-i0wHFFfDrohILcJv5BuFR0xnNe1-RqE1SiPAtvHfY4sKujsZt-8peOZCUxTRnEYiHtWNo1i0mHraLg2WhmgkmjwkR3u7hx-GSWzakFjBCpkw6dLCSlvn3GZCp0UNbwAETZnxjlsNi6ax3pq6zCurAfAJYVzqKwdIzDHn2SOy0cwa_4RQn9esFpL7NPUFd0zX2hljrZfGMF7bHnm7enTKRkVzbKwxVavMBqdShanskddr23mn43Gl1U7wgLWJPjtF5lvJ1bfRRwVQBxNYpiY9sr1yERWDvlUAlrDIXsqqR16tD0O44jcY3fjZMtgAwoKkNrvWBrsO5CVc53HnfusbArTJKs7hyLvgRNcMRo2_nozD3tN_MX5Jbg0PD_bV_qfRl2fkNgBE0XHqtsnG4mzpnwMIW5gXIdR-A297Lpw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZaxRBEG5iAuJLPOKxGrVFCSjMMjN9zLT4spis8VqW1ZD4IE2fecg6u2R3wfjr7eo5YiQE9GkGumboo2r6q5rqrxB6oVwuMmJpklGmEspLlghTqKRwLg367LiO1Ro-j_j-Af1wxI7W0Jv2LEzND9EF3MAy4vcaDHxu_R9GPl-czftZzktxDW1Qnpag07uTc_IokTVc4bRMWACRDTkp5PGcP3thO9qAmf15Gda8CF3j3jO8ib63va5TTk76q6Xum19_ETr-77Buoc0GlOJBrUW30Zqr7qCtQRUc8h9neAfHNNEYf99C0wGGvbAOIWID4BuyjeIC45nH9VEU7IEYIVwrd9wUqMB7k_HiNQ56uVQYKDSnTRoeVpXFELKYOrxYaQgM4SbN5C46GO59fbufNCUbEsMJFQkRNqVGGJ8zk3GVUh_sHyBTpp1lRoUtUxtntC_y0qgA9zjXNnWlDTjMEuvIPbRezSr3AGGXe-K5YC5NHWWWKK-s1sY4oTVh3vTQy3blpGn4zKGsxlS2fg1MpYxT2UPPO9l5zeJxqdROVIBORJ2eQN5bweTh6J0MQAfcVyInPbTdaohsTH4hA1SCEHshyh561jUHY4U_MKpys1WUCfgquLTZlTJQcyAvwnvu19rXdShgTVIyFlpeRR26YjBy_OXbON49_Bfhp-j6eHcoP70ffXyEbgR0yOuEum20vjxduccBgS31k2hovwHogi1U
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+functional+classification+of+medial+frontal+negativity+ERPs%3A+Theta+oscillations+and+single+subject+effects&rft.jtitle=Psychophysiology&rft.au=Van+Noordt%2C+Stefon+J.R.&rft.au=Campopiano%2C+Allan&rft.au=Segalowitz%2C+Sidney+J.&rft.date=2016-09-01&rft.issn=0048-5772&rft.eissn=1469-8986&rft.volume=53&rft.issue=9&rft.spage=1317&rft.epage=1334&rft_id=info:doi/10.1111%2Fpsyp.12689&rft.externalDBID=10.1111%252Fpsyp.12689&rft.externalDocID=PSYP12689
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0048-5772&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0048-5772&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0048-5772&client=summon