A functional classification of medial frontal negativity ERPs: Theta oscillations and single subject effects
Theta oscillations in the EEG have been linked to several ERPs that are elicited during performance‐monitoring tasks, including the error‐related negativity (ERN), no‐go N2, and the feedback‐related negativity (FRN). We used a novel paradigm to isolate independent components (ICs) in single subjects...
Saved in:
Published in | Psychophysiology Vol. 53; no. 9; pp. 1317 - 1334 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
Blackwell Publishing Ltd
01.09.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Theta oscillations in the EEG have been linked to several ERPs that are elicited during performance‐monitoring tasks, including the error‐related negativity (ERN), no‐go N2, and the feedback‐related negativity (FRN). We used a novel paradigm to isolate independent components (ICs) in single subjects' (n = 27) EEG accounting for a medial frontal negativity (MFN) to response cue stimuli that signal a potential change in future response demands. Medial frontal projecting ICs that were sensitive to these response cues also described the ERNs, no‐go N2s, and, to a lesser extent, the FRNs, that were elicited in letter flanker, go/no‐go, and time‐estimation tasks, respectively. In addition, percentile bootstrap tests using trimmed means indicated that the medial frontal ICs show an increase in theta activity during the ERN, no‐go N2, and FRN across tasks and within individuals. Our results provide an important validation of previous studies by showing that increases in medial frontal theta to cognitively challenging events in multiple paradigms is a reliable effect within individuals and can be elicited by basic stimulus cues that signal the potential need to adjust response control. Thus, medial frontal theta reflects a neural response common to all MFN paradigms and characterizes the general process of controlling attention without the need to induce error commission, inhibited responses, or to present negative feedback. |
---|---|
AbstractList | Theta oscillations in the EEG have been linked to several ERPs that are elicited during performance‐monitoring tasks, including the error‐related negativity (ERN), no‐go N2, and the feedback‐related negativity (FRN). We used a novel paradigm to isolate independent components (ICs) in single subjects' (
n
= 27) EEG accounting for a medial frontal negativity (MFN) to response cue stimuli that signal a potential change in future response demands. Medial frontal projecting ICs that were sensitive to these response cues also described the ERNs, no‐go N2s, and, to a lesser extent, the FRNs, that were elicited in letter flanker, go/no‐go, and time‐estimation tasks, respectively. In addition, percentile bootstrap tests using trimmed means indicated that the medial frontal ICs show an increase in theta activity during the ERN, no‐go N2, and FRN across tasks and within individuals. Our results provide an important validation of previous studies by showing that increases in medial frontal theta to cognitively challenging events in multiple paradigms is a reliable effect within individuals and can be elicited by basic stimulus cues that signal the potential need to adjust response control. Thus, medial frontal theta reflects a neural response common to all MFN paradigms and characterizes the general process of controlling attention without the need to induce error commission, inhibited responses, or to present negative feedback. Theta oscillations in the EEG have been linked to several ERPs that are elicited during performance-monitoring tasks, including the error-related negativity (ERN), no-go N2, and the feedback-related negativity (FRN). We used a novel paradigm to isolate independent components (ICs) in single subjects' (n=27) EEG accounting for a medial frontal negativity (MFN) to response cue stimuli that signal a potential change in future response demands. Medial frontal projecting ICs that were sensitive to these response cues also described the ERNs, no-go N2s, and, to a lesser extent, the FRNs, that were elicited in letter flanker, go/no-go, and time-estimation tasks, respectively. In addition, percentile bootstrap tests using trimmed means indicated that the medial frontal ICs show an increase in theta activity during the ERN, no-go N2, and FRN across tasks and within individuals. Our results provide an important validation of previous studies by showing that increases in medial frontal theta to cognitively challenging events in multiple paradigms is a reliable effect within individuals and can be elicited by basic stimulus cues that signal the potential need to adjust response control. Thus, medial frontal theta reflects a neural response common to all MFN paradigms and characterizes the general process of controlling attention without the need to induce error commission, inhibited responses, or to present negative feedback. Theta oscillations in the EEG have been linked to several ERPs that are elicited during performance-monitoring tasks, including the error-related negativity (ERN), no-go N2, and the feedback-related negativity (FRN). We used a novel paradigm to isolate independent components (ICs) in single subjects' (n = 27) EEG accounting for a medial frontal negativity (MFN) to response cue stimuli that signal a potential change in future response demands. Medial frontal projecting ICs that were sensitive to these response cues also described the ERNs, no-go N2s, and, to a lesser extent, the FRNs, that were elicited in letter flanker, go/no-go, and time-estimation tasks, respectively. In addition, percentile bootstrap tests using trimmed means indicated that the medial frontal ICs show an increase in theta activity during the ERN, no-go N2, and FRN across tasks and within individuals. Our results provide an important validation of previous studies by showing that increases in medial frontal theta to cognitively challenging events in multiple paradigms is a reliable effect within individuals and can be elicited by basic stimulus cues that signal the potential need to adjust response control. Thus, medial frontal theta reflects a neural response common to all MFN paradigms and characterizes the general process of controlling attention without the need to induce error commission, inhibited responses, or to present negative feedback.Theta oscillations in the EEG have been linked to several ERPs that are elicited during performance-monitoring tasks, including the error-related negativity (ERN), no-go N2, and the feedback-related negativity (FRN). We used a novel paradigm to isolate independent components (ICs) in single subjects' (n = 27) EEG accounting for a medial frontal negativity (MFN) to response cue stimuli that signal a potential change in future response demands. Medial frontal projecting ICs that were sensitive to these response cues also described the ERNs, no-go N2s, and, to a lesser extent, the FRNs, that were elicited in letter flanker, go/no-go, and time-estimation tasks, respectively. In addition, percentile bootstrap tests using trimmed means indicated that the medial frontal ICs show an increase in theta activity during the ERN, no-go N2, and FRN across tasks and within individuals. Our results provide an important validation of previous studies by showing that increases in medial frontal theta to cognitively challenging events in multiple paradigms is a reliable effect within individuals and can be elicited by basic stimulus cues that signal the potential need to adjust response control. Thus, medial frontal theta reflects a neural response common to all MFN paradigms and characterizes the general process of controlling attention without the need to induce error commission, inhibited responses, or to present negative feedback. |
Author | Campopiano, Allan Segalowitz, Sidney J. Van Noordt, Stefon J.R. |
Author_xml | – sequence: 1 givenname: Stefon J.R. surname: Van Noordt fullname: Van Noordt, Stefon J.R. organization: Cognitive and Affective Neuroscience Laboratory, Department of Psychology, Brock University, Ontario, St. Catharines, Canada – sequence: 2 givenname: Allan surname: Campopiano fullname: Campopiano, Allan organization: Cognitive and Affective Neuroscience Laboratory, Department of Psychology, Brock University, Ontario, St. Catharines, Canada – sequence: 3 givenname: Sidney J. surname: Segalowitz fullname: Segalowitz, Sidney J. email: sid.segalowitz@brocku.ca organization: Cognitive and Affective Neuroscience Laboratory, Department of Psychology, Brock University, Ontario, St. Catharines, Canada |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27338558$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkV1rFDEYhYNU7LZ64w-QgDdSmJqPyZd3pdQqFF1qRbwKmUxSs2Yz6yRj3X9vdrfrRRExNwfyPufl5ZwjcJCG5AB4jtEpru_1Kq9Xp5hwqR6BGW65aqSS_ADMEGplw4Qgh-Ao5wVCSGFCnoBDIiiVjMkZiGfQT8mWMCQToY0m5-CDNZsPOHi4dH2oAz8OqVRN7raOfoayhhfX8_wG3nxzxcAh2xDj1pShST3MId1GB_PULZwt0HlfJT8Fj72J2T2712Pw-e3Fzfm75urj5fvzs6vGctqqhqoetVZZT5jF3KDWC0UZZgp3rmfWtJh21tnOCyKtQZJx3vXIyR4x3tPe0WPward3NQ4_JpeLXoZsXb0wuWHKGkvMBEJEyP9BMVEtwriiLx-gi2Eaa2xbCjFChdosfHFPTV0NT6_GsDTjWu8jrwDaAXYcch6d1zaUbXRlNCFqjPSmVb1pVW9brZaTB5b91r_CeAffhejW_yD1_NPX-d7T7DwhF_frj8eM3zUXVDD95cOlZgQzjjDV1_Q3lNDBwA |
CitedBy_id | crossref_primary_10_1016_j_brainres_2017_07_026 crossref_primary_10_1111_psyp_13856 crossref_primary_10_1007_s12671_019_1096_3 crossref_primary_10_1016_j_bpsc_2024_04_009 crossref_primary_10_1016_j_jneumeth_2020_108961 crossref_primary_10_1016_j_biopsycho_2023_108598 crossref_primary_10_1016_j_bpsc_2024_03_001 crossref_primary_10_1016_j_dcn_2021_100929 crossref_primary_10_1093_scan_nsad009 crossref_primary_10_1111_psyp_13573 crossref_primary_10_3390_brainsci14050506 crossref_primary_10_3758_s13415_017_0546_4 crossref_primary_10_1016_j_biopsycho_2017_09_008 crossref_primary_10_1016_j_ijpsycho_2025_112555 crossref_primary_10_1162_jocn_a_01884 crossref_primary_10_1093_brain_awab345 crossref_primary_10_1016_j_dcn_2021_100995 crossref_primary_10_1016_j_dcn_2024_101500 crossref_primary_10_3389_fpsyg_2018_01420 crossref_primary_10_1111_psyp_13708 crossref_primary_10_1038_srep46651 crossref_primary_10_3389_fnhum_2018_00178 crossref_primary_10_3389_fnsys_2021_611507 crossref_primary_10_1162_jocn_a_02060 crossref_primary_10_1002_dev_21502 crossref_primary_10_1007_s00213_017_4645_2 crossref_primary_10_1016_j_biopsych_2021_08_020 crossref_primary_10_1111_psyp_13208 crossref_primary_10_1111_psyp_14734 crossref_primary_10_1016_j_intell_2021_101569 crossref_primary_10_1016_j_rasd_2017_01_011 crossref_primary_10_1016_j_bbr_2018_03_025 crossref_primary_10_1016_j_neuropsychologia_2021_108020 crossref_primary_10_3758_s13415_017_0539_3 crossref_primary_10_1016_j_ijpsycho_2019_09_015 crossref_primary_10_1016_j_dcn_2019_100665 crossref_primary_10_1111_ejn_14174 crossref_primary_10_1016_j_biopsych_2023_05_006 crossref_primary_10_1523_ENEURO_0061_17_2017 crossref_primary_10_1016_j_neuroimage_2021_118765 crossref_primary_10_1016_j_neuroimage_2019_01_022 crossref_primary_10_1016_j_neubiorev_2021_12_027 crossref_primary_10_1016_j_nicl_2017_11_010 crossref_primary_10_1007_s41465_021_00223_6 crossref_primary_10_1016_j_bandc_2018_08_001 crossref_primary_10_1016_j_brainres_2018_04_021 crossref_primary_10_1016_j_neuroimage_2017_08_032 |
Cites_doi | 10.1523/JNEUROSCI.0802-12.2012 10.1523/JNEUROSCI.4137-08.2009 10.1111/psyp.12040 10.1016/j.brainres.2008.07.114 10.1016/j.jphysparis.2014.04.003 10.1126/science.1066168 10.1016/j.clinph.2004.03.031 10.1016/j.brainres.2007.03.092 10.1016/j.jneumeth.2003.10.009 10.3389/fpsyg.2011.00030 10.1093/cercor/bhs236 10.1073/pnas.0906194107 10.1016/j.neuroimage.2011.09.011 10.1523/JNEUROSCI.5754-12.2013 10.1016/j.neulet.2015.04.009 10.1167/8.12.3 10.1037/0003-066X.53.3.300 10.1016/j.neuroimage.2008.12.038 10.1162/neco.1995.7.6.1129 10.1016/j.neuroimage.2013.08.028 10.1016/j.neubiorev.2012.05.008 10.1016/j.neuroimage.2010.10.033 10.1111/j.1469-8986.2009.00942.x 10.1016/j.clinph.2007.07.023 10.1523/JNEUROSCI.2315-05.2005 10.3389/fpsyg.2011.00107 10.1016/j.cogbrainres.2004.09.006 10.3389/fnhum.2014.00994 10.1016/S0304-3940(02)00288-4 10.1080/03610910903289151 10.1167/13.5.22 10.1523/JNEUROSCI.2565-12.2013 10.1002/hbm.20937 10.3389/fnhum.2012.00197 10.3758/cabn.7.4.367 10.1371/journal.pone.0025591 10.1007/s00429-013-0521-y 10.1093/cercor/bhh125 10.1016/j.clinph.2006.11.009 10.1016/j.neuroimage.2009.05.064 10.3758/BF03203267 10.1016/j.ijpsycho.2007.05.017 10.1097/00001756-199903170-00003 10.1093/oxfordhb/9780195374148.001.0001 10.1016/s0304-3940(99)00679-5 10.1016/j.tics.2011.12.008 10.1007/s10548-014-0361-y 10.1016/j.neuroimage.2016.09.054 10.1037/1082-989X.8.3.254 10.1523/JNEUROSCI.5421-13.2014 10.1016/j.neuroimage.2013.08.058 10.1016/j.neuroimage.2015.05.085 10.1523/JNEUROSCI.4652-10.2011 10.1152/jn.00358.2009 10.1038/nn.4071 10.1016/s1388-2457(01)00691-5 10.1016/j.clinph.2011.03.030 10.1016/S0031-9384(02)00930-7 10.1016/j.neuroimage.2009.11.080 10.1152/jn.00479.2013 10.1126/science.1100301 10.1016/j.neuroimage.2013.08.054 10.1098/rstb.1999.0469 10.1006/nimg.2001.0923 10.1073/pnas.1504196112 10.3389/fnhum.2010.00210 10.1016/j.neuroimage.2010.02.005 10.1111/j.1469-8986.2011.01293.x 10.1109/5.939827 10.1016/j.neuroimage.2015.04.021 10.1111/j.1467-9280.1993.tb00586.x 10.1016/j.cortex.2007.08.013 10.1523/JNEUROSCI.6352-11.2012 10.1016/j.tics.2004.03.008 10.1155/2011/156869 10.1016/j.tics.2015.02.004 |
ContentType | Journal Article |
Copyright | 2016 Society for Psychophysiological Research 2016 Society for Psychophysiological Research. |
Copyright_xml | – notice: 2016 Society for Psychophysiological Research – notice: 2016 Society for Psychophysiological Research. |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7TK K9. 7X8 |
DOI | 10.1111/psyp.12689 |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Neurosciences Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) Neurosciences Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic Neurosciences Abstracts MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1469-8986 1540-5958 |
EndPage | 1334 |
ExternalDocumentID | 4143545491 27338558 10_1111_psyp_12689 PSYP12689 ark_67375_WNG_52156013_R |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Natural Sciences and Engineering Council of Canada funderid: 122222‐2013 – fundername: Canadian Foundation for Innovation funderid: 8780 |
GroupedDBID | --- --Z -DZ -~X .3N .55 .GA .GJ .Y3 05W 0R~ 10A 123 186 1OB 1OC 29P 2QV 31~ 33P 36B 4.4 50Y 50Z 51W 51Y 52M 52O 52Q 52R 52S 52T 52U 52V 52W 53G 5HH 5LA 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A04 AABNI AAESR AAHHS AAONW AAOUF AASGY AAXRX AAYJJ AAZKR ABCQN ABCUV ABDBF ABDPE ABEML ABGDZ ABITZ ABIVO ABJNI ABLJU ABPPZ ABPVW ABQWH ABSOO ABXGK ACAHQ ACBKW ACBWZ ACCFJ ACCZN ACFBH ACGFO ACGFS ACGOF ACHQT ACMXC ACNCT ACPOU ACPRK ACQPF ACSCC ACWUS ACXQS ADBBV ADBTR ADEMA ADEOM ADIZJ ADKYN ADMGS ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFNX AFFPM AFGKR AFKFF AFPWT AFZJQ AHBTC AHEFC AHMBA AIACR AIAGR AIFKG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ASTYK AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BMXJE BNVMJ BQESF BROTX BRXPI BSCLL BY8 CAG COF CS3 D-6 D-7 D-C D-D DC6 DCZOG DPXWK DR2 DRFUL DRMAN DRSSH DU5 DXH EAD EAP EBC EBD EBS EJD EMB EMK EMOBN EPS ESX F00 F01 F5P FEDTE FUBAC FZ0 G-S G.N G50 GODZA HAOEW HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M K48 KBYEO L7B LATKE LC2 LC4 LEEKS LH4 LITHE LOXES LP6 LP7 LPU LUTES LW6 LYRES MEWTI MK4 MRFUL MRMAN MRSSH MSFUL MSMAN MSSSH MVM MXFUL MXMAN MXSSH N04 N06 N9A NEJ NF~ O66 O9- OHT OIG OVD P2W P2Y P2Z P4B P4C PALCI PQQKQ Q.N Q11 QB0 R.K RCA RIG RIWAO RJQFR ROL RX1 S10 SAMSI SUPJJ SV3 TEORI TN5 TUS UAP UB1 V8K VQA W8V W99 WBKPD WH7 WHDPE WIH WII WIJ WOHZO WQZ WRC WSUWO WXI WXSBR X7M XG1 XJT XOL XSW YNT YYM YYP YZZ ZCA ZGI ZWS ZXP ZZTAW ~IA ~WP AAHQN AAIPD AAMNL AANHP AAYCA ABVKB ACRPL ACUHS ACYXJ ADNMO AFWVQ AFYRF ALVPJ AAYXX ADXHL AETEA AEYWJ AGHNM AGQPQ CITATION CGR CUY CVF ECM EIF NPM VXZ YIF YIN Z5M 7TK AAMMB AEFGJ AGXDD AIDQK AIDYY K9. 7X8 |
ID | FETCH-LOGICAL-c6349-39d04c9cf25c16a04f79351591bed5ca413bcecbf728ca08566bd0e8d056d3de3 |
IEDL.DBID | DR2 |
ISSN | 0048-5772 1469-8986 |
IngestDate | Fri Jul 11 13:46:07 EDT 2025 Fri Jul 11 03:55:44 EDT 2025 Sun Jul 13 02:58:20 EDT 2025 Wed Feb 19 02:43:30 EST 2025 Thu Apr 24 23:11:08 EDT 2025 Tue Jul 01 01:48:24 EDT 2025 Wed Jan 22 16:35:34 EST 2025 Wed Oct 30 09:56:29 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | Robust estimation Performance monitoring Medial frontal cortex Theta Independent component analysis |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2016 Society for Psychophysiological Research. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c6349-39d04c9cf25c16a04f79351591bed5ca413bcecbf728ca08566bd0e8d056d3de3 |
Notes | ArticleID:PSYP12689 ark:/67375/WNG-52156013-R Canadian Foundation for Innovation - No. 8780 Natural Sciences and Engineering Council of Canada - No. 122222-2013 istex:2B7E20200E260B447E9B416884CC211140364478 This work was made possible by funding from the Canadian Foundation for Innovation (grant number 8780) and the Natural Sciences and Engineering Council of Canada (NSERC; grant number 122222‐2013) to SJS, NSERC Postgraduate Scholarship Doctoral Award to SJRV, and the facilities of the Shared Hierarchical Academic Research Computing Network and Compute/Calcul Canada. SJRV and SJS designed the study, SJRV and AC performed the experiments and data analyses, and SJRV, AC, and SJS wrote the manuscript. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 27338558 |
PQID | 1810523798 |
PQPubID | 41359 |
PageCount | 18 |
ParticipantIDs | proquest_miscellaneous_1815700278 proquest_miscellaneous_1811294011 proquest_journals_1810523798 pubmed_primary_27338558 crossref_citationtrail_10_1111_psyp_12689 crossref_primary_10_1111_psyp_12689 wiley_primary_10_1111_psyp_12689_PSYP12689 istex_primary_ark_67375_WNG_52156013_R |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 2016 |
PublicationDateYYYYMMDD | 2016-09-01 |
PublicationDate_xml | – month: 09 year: 2016 text: September 2016 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Oxford |
PublicationTitle | Psychophysiology |
PublicationTitleAlternate | Psychophysiol |
PublicationYear | 2016 |
Publisher | Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing Ltd |
References | Maurer, U., Brem, S., Liechti, M., Maurizio, S., Michels, L., & Brandeis, D. (2014). Frontal midline theta reflects individual task performance in a working memory task. Brain Topography, 127-134. doi: 10.1007/s10548-014-0361-y Palmer, J. A., Kreutz-Delgado, K., & Makeig, S. (2011). AMICA: An adaptive mixture of independent component analyzers with shared components (Technical report). San Diego, CA: Swartz Center for Computational Neuroscience. Makeig, S., Debener, S., Onton, J., & Delorme, A. (2004). Mining event-related brain dynamics. Trends in Cognitive Sciences, 8(5), 204-210. doi: 10.1016/j.tics.2004.03.008 Wilcox, R. R. (1998). How many discoveries have been lost by ignoring modern statistical methods? American Psychologist, 53(3), 300-314. Segalowitz, S. J., Santesso, D. L., Murphy, T. I., Homan, D., Chantziantoniou, D. K., & Khan, S. (2010). Retest reliability of medial frontal negativities during performance monitoring. Psychophysiology, 47(2), 260-270. doi: 10.1111/j.1469-8986.2009.00942.x Weissman, D. H., Gopalakrishnan, A., Hazlett, C. J., & Woldorff, M. G. (2005). Dorsal anterior cingulate cortex resolves conflict from distracting stimuli by boosting attention toward relevant events. Cerebral Cortex, 15(2), 229-237. doi: 10.1093/cercor/bhh125 Cohen, M. X., & Donner, T. H. (2013). Midfrontal conflict-related theta-band power reflects neural oscillations that predict behavior. Journal of Neurophysiology, 110(12), 2752-2763. doi: 10.1152/jn.00479.2013 Bokura, H., Yamaguchi, S., & Kobayashi, S. (2001). Electrophysiological correlates for response inhibition in a go/nogo task. Clinical Neurophysiology, 112(12), 2224-2232. doi: 10.1016/s1388-2457(01)00691-5 Nigbur, R., Ivanova, G., & Stürmer, B. (2011). Theta power as a marker for cognitive interference. Clinical Neurophysiology, 122(11), 2185-2194. doi: 10.1016/j.clinph.2011.03.030 Voytek, B., Kayser, A. S., Badre, D., Fegen, D., Chang, E. F., Crone, N. E., ... D'Esposito, M. (2015). Oscillatory dynamics coordinating human frontal networks in support of goal maintenance. Nature Neuroscience, 18, 1318-1324. doi: 10.1038/nn.4071 Cohen, M. X., Ridderinkhof, K. R., Haupt, S., Elger, C. E., & Fell, J. (2008). Medial frontal cortex and response conflict: Evidence from human intracranial EEG and medial frontal cortex lesion. Brain Research, 1238, 127-142. doi: 10.1016/j.brainres.2008.07.114 Cavanagh, J. F., Zambrano-Vazquez, L., & Allen, J. J. B. (2012). Theta lingua franca: A common mid-frontal substrate for action monitoring processes. Psychophysiology, 49(2), 220-238. doi: 10.1111/j.1469-8986.2011.01293.x Lavallee, C. F., Meemken, M. T., Herrmann, C. S., & Huster, R. J. (2014). When holding your horses meets the deer in the headlights: Time-frequency characteristics of global and selective stopping under conditions of proactive and reactive control. Frontiers in Human Neuroscience, 8, 1-12. doi: 10.3389/fnhum.2014.00994 Womelsdorf, T., Johnston, K., Vinck, M., & Everling, S. (2010). Theta-activity in anterior cingulate cortex predicts task rules and their adjustments following errors. Proceedings of the National Academy of Sciences of the USA, 107(11), 5248-5253. doi: 10.1073/pnas.0906194107 Oostenveld, R., Fries, P., Maris, E., & Schoffelen, J.-M. (2011). FieldTrip: Open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Computational Intelligence and Neuroscience, 156869. doi: 10.1155/2011/156869 Holroyd, C. B., & Coles, M. G. H. (2008). Dorsal anterior cingulate cortex integrates reinforcement history to guide voluntary behavior. Cortex, 44(5), 548-559. doi: 10.1016/j.cortex.2007.08.013 Delorme, A., & Makeig, S. (2004). EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. Journal of Neuroscience Methods, 134(1), 9-21. doi: 10.1016/j.jneumeth.2003.10.009 Cristofori, I., Moretti, L., Harquel, S., Posada, A., Deiana, G., Isnard, J., ... Sirigu, A. (2013). Theta signal as the neural signature of social exclusion. Cerebral Cortex, 23(10), 2437-2447. doi: 10.1093/cercor/bhs236 Cavanagh, J. F., Frank, M. J., Klein, T. J., & Allen, J. J. B. (2010). Frontal theta links prediction errors to behavioral adaptation in reinforcement learning. NeuroImage, 49(4), 3198-3209. doi: 10.1016/j.neuroimage.2009.11.080 Tsujimoto, T., Shimazu, H., Isomura, Y., & Sasaki, K. (2010). Theta oscillations in primate prefrontal and anterior cingulate cortices in forewarned reaction time tasks. Journal of Neurophysiology, 103(2), 827-843. doi: 10.1152/jn.00358.2009 Bell, A. J., & Sejnowski, T. J. (1995). An information-maximization approach to blind separation and blind deconvolution. Neural Computation, 7(6), 1129-1159. doi: 10.1162/neco.1995.7.6.1129 Gentsch, A., Ullsperger, P., & Ullsperger, M. (2009). Dissociable medial frontal negativities from a common monitoring system for self- and externally caused failure of goal achievement. NeuroImage, 47(4), 2023-2030. doi: 10.1016/j.neuroimage.2009.05.064 Luu, P., Tucker, D. M., & Stripling, R. (2007). Neural mechanisms for learning actions in context. Brain Research, 1179, 89-105. doi: 10.1016/j.brainres.2007.03.092 Meltzer, J. A., Negishi, M., Mayes, L. C., & Constable, R. T. (2007). Individual differences in EEG theta and alpha dynamics during working memory correlate with fMRI responses across subjects. Clinical Neurophysiology, 118(11), 2419-2436. doi: 10.1016/j.clinph.2007.07.023 Walsh, M. M., & Anderson, J. R. (2012). Learning from experience: Event-related potential correlates of reward processing, neural adaptation, and behavioral choice. Neuroscience and Biobehavioral Reviews, 36(8), 1870-1884. doi: 10.1016/j.neubiorev.2012.05.008 Wessel, J. R., Danielmeier, C., Morton, J. B., & Ullsperger, M. (2012). Surprise and error: Common neuronal architecture for the processing of errors and novelty. Journal of Neuroscience, 32(22), 7528-7537. doi: 10.1523/JNEUROSCI.6352-11.2012 Jung, T.-P., Makeig, S., McKeown, M. J., Bell, A. J., Lee, T.-W., & Sejnowski, T. J. (2001). Imaging brain dynamics using independent component analysis. Proceedings of the IEEE, 89(7), 1107-1122. doi: 10.1109/5.939827 Groppe, D., Makeig, S., & Kutas, M. (2009). Identifying reliable independent components via split-half comparisons. NeuroImage, 45(4), 1199-1211. doi: 10.1016/j.neuroimage.2008.12.038 Scheeringa, R., Bastiaansen, M. C. M., Petersson, K. M., Oostenveld, R., Norris, D. G., & Hagoort, P. (2008). Frontal theta EEG activity correlates negatively with the default mode network in resting state. International Journal of Psychophysiology, 67(3), 242-251. doi: 10.1016/j.ijpsycho.2007.05.017 Womelsdorf, T., Vinck, M., Leung, L. S., & Everling, S. (2010). Selective theta-synchronization of choice-relevant information subserves goal-directed behavior. Frontiers in Human Neuroscience, 4, 210. doi: 10.3389/fnhum.2010.00210 Ishii, R., Shinosaki, K., Ukai, S., Inouye, T., Ishihara, T., Yoshimine, T., ... Takeda, M. (1999). Medial prefrontal cortex generates frontal midline theta rhythm. NeuroReport, 10(4), 675-679. doi: 10.1097/00001756-199903170-00003 Hoffmann, S., Labrenz, F., & Beste, C. (2014). Crosslinking EEG time-frequency decomposition and fMRI in error monitoring. Brain Structure & Function, 219, 595-605. doi: 10.1007/s00429-013-0521-y Ridderinkhof, K. R., Ullsperger, M., Crone, E. A, & Nieuwenhuis, S. (2004). The role of the medial frontal cortex in cognitive control. Science, 306(5695), 443-447. doi: 10.1126/science.1100301 Isomura, Y., Ito, Y., Akazawa, T., Nambu, A., & Takada, M. (2003). Neural coding of "attention for action" and "response selection" in primate anterior cingulate cortex. Journal of Neuroscience, 23(22), 8002-8012. doi: 10.1523/JNEUROSCI.4652-10.2011 Wessel, J. R., & Ullsperger, M. (2011). Selection of independent components representing event-related brain potentials: A data-driven approach for greater objectivity. NeuroImage, 54(3), 2105-2115. doi: 10.1016/j.neuroimage.2010.10.033 Rousselet, G. A., & Pernet, C. R. (2011). Quantifying the time course of visual object processing using ERPs: It's time to up the game. Frontiers in Psychology, 2, 107. doi: 10.3389/fpsyg.2011.00107 Asada, H., Fukuda, Y., Tsunoda, S., Yamaguchi, M., & Tonoike, M. (1999). Frontal midline theta rhythms reflect alternative activation of prefrontal cortex and anterior cingulate cortex in humans. Neuroscience Letters, 274(1), 29-32. doi: 10.1016/s0304-3940(99)00679-5 Ma, J., Liu, C., & Chen, X. (2015). Emotional conflict processing induce boosted theta oscillation. Neuroscience Letters, 595, 69-73. doi: 10.1016/j.neulet.2015.04.009 Gehring, W. J., Goss, B., Coles, M. G. H., Meyer, D. E., & Donchin, E. (1993). A neural system for error detection and compensation. Psychological Science, 4(6), 385-390. doi: 10.1111/j.1467-9280.1993.tb00586.x Holroyd, C. B., & Yeung, N. (2012). Motivation of extended behaviors by anterior cingulate cortex. Trends in Cognitive Sciences, 16(2), 122-128. doi: 10.1016/j.tics.2011.12.008 van Noordt, S. J. R., White, L. O., Wu, J., Mayes, L. C., & Crowley, M. J. (2015). Social exclusion modulates event-related frontal theta and tracks ostracism distress in children. NeuroImage, 118, 248-255. doi: 10.1016/j.neuroimage.2015.05.085 Cohen, M. X., & Cavanagh, J. F. (2011). Single-trial regression elucidates the role of prefrontal theta oscillations in response conflict. Frontiers in Psychology, 2, 30. doi: 10.3389/fpsyg.2011.00030 Hoffmann, S., & Falkenstein, M. (2010). Independent component analysis of erroneous and correct responses suggests online response control. Human Brain Mapping, 31(9), 1305-1315. doi: 10.1002/hbm.20937 Reinhart, R. M. G., Zhu, J., Park, S., & Woodman, G. F. (2015). Synchronizing theta oscillations with direct-current stimulation strengthens adaptive control in the human brain. Proceedings of the National Academy of Sciences, 112(30), 201504196. doi: 10.1073/pnas.1504196112 Wilcox, R. R. (2012). Introduction to robust estimation. San Diego, CA: Academic Press 1974; 16 2009; 45 2009; 47 2014; 219 2010; 107 2013; 23 2004; 8 2010; 103 2008; 8 2011; 54 2015; 109 2012; 16 2012; 59 2001; 89 2008; 1238 2005; 22 1993; 4 2005; 25 2004; 134 2013; 13 2013; 50 2003; 8 2007; 1179 2008; 67 2007; 7 1999; 10 2013; 110 2014; 8 1998; 10 2001; 14 1998; 53 2010; 4 2011; 122 2010; 31 2015; 19 2011; 2 2015; 18 2012 2011 2002; 295 2002; 77 2008 2005 2014; 85 2012; 36 2004; 306 2014; 84 2011; 6 2012; 32 2009; 29 1995; 7 2001; 112 2010; 49 2007; 118 2004; 115 2010; 47 2013; 33 2015; 114 2015; 595 2015; 112 1999; 274 2002; 325 2016 2008; 44 2012; 49 2014 1999; 354 2015; 118 2012; 6 2005; 15 2014; 34 2009; 38 2010; 51 2013; 84C 2003; 23 e_1_2_6_51_1 e_1_2_6_74_1 e_1_2_6_53_1 e_1_2_6_76_1 e_1_2_6_32_1 e_1_2_6_70_1 e_1_2_6_30_1 e_1_2_6_72_1 Wilcox R. R. (e_1_2_6_77_1) 2012 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_59_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_17_1 e_1_2_6_55_1 e_1_2_6_78_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_57_1 e_1_2_6_62_1 e_1_2_6_64_1 e_1_2_6_43_1 e_1_2_6_81_1 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_60_1 Wilcox R. R. (e_1_2_6_75_1) 2005 e_1_2_6_9_1 e_1_2_6_5_1 e_1_2_6_7_1 Palmer J. A. (e_1_2_6_49_1) 2011 e_1_2_6_24_1 e_1_2_6_3_1 e_1_2_6_22_1 e_1_2_6_66_1 e_1_2_6_28_1 e_1_2_6_45_1 e_1_2_6_26_1 e_1_2_6_47_1 e_1_2_6_68_1 e_1_2_6_52_1 e_1_2_6_73_1 e_1_2_6_54_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_50_1 e_1_2_6_71_1 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_12_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_56_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_58_1 e_1_2_6_79_1 e_1_2_6_63_1 e_1_2_6_42_1 e_1_2_6_65_1 e_1_2_6_21_1 e_1_2_6_80_1 e_1_2_6_40_1 e_1_2_6_61_1 e_1_2_6_8_1 e_1_2_6_4_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_48_1 Jung T.‐P. (e_1_2_6_33_1) 1998; 10 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_67_1 e_1_2_6_27_1 e_1_2_6_46_1 e_1_2_6_69_1 |
References_xml | – reference: Carter, C. S., & van Veen, V. (2007). Anterior cingulate cortex and conflict detection: An update of theory and data. Cognitive, Affective & Behavioral Neuroscience, 7(4), 367-379. doi: 10.3758/cabn.7.4.367 – reference: Groppe, D., Makeig, S., & Kutas, M. (2009). Identifying reliable independent components via split-half comparisons. NeuroImage, 45(4), 1199-1211. doi: 10.1016/j.neuroimage.2008.12.038 – reference: Isomura, Y., Ito, Y., Akazawa, T., Nambu, A., & Takada, M. (2003). Neural coding of "attention for action" and "response selection" in primate anterior cingulate cortex. Journal of Neuroscience, 23(22), 8002-8012. doi: 10.1523/JNEUROSCI.4652-10.2011 – reference: Wilcox, R. R. (2005). Introduction to robust estimation and hypothesis testing (2nd ed.). Amsterdam, Netherlands: Elsevier. – reference: Jung, T.-P., Makeig, S., McKeown, M. J., Bell, A. J., Lee, T.-W., & Sejnowski, T. J. (2001). Imaging brain dynamics using independent component analysis. Proceedings of the IEEE, 89(7), 1107-1122. doi: 10.1109/5.939827 – reference: Liu, Z.-X., Woltering, S., & Lewis, M. D. (2014). Developmental change in EEG theta activity in the medial prefrontal cortex during response control. NeuroImage, 85(Pt 2), 873-887. doi: 10.1016/j.neuroimage.2013.08.054 – reference: Davis, K. D., Taylor, K. S., Hutchison, W. D., Dostrovsky, J. O., McAndrews, M. P., Richter, E. O., & Lozano, A. M. (2005). Human anterior cingulate cortex neurons encode cognitive and emotional demands. Journal of Neuroscience, 25(37), 8402-8406. doi: 10.1523/JNEUROSCI.2315-05.2005 – reference: Makeig, S., Westerfield, M., Jung, T. P., Enghoff, S., Townsend, J., Courchesne, E., & Sejnowski, T. J. (2002). Dynamic brain sources of visual evoked responses. Science, 295(5555), 690-694. doi: 10.1126/science.1066168 – reference: Silvetti, M., Nuñez Castellar, E., Roger, C., & Verguts, T. (2014). Reward expectation and prediction error in human medial frontal cortex: An EEG study. NeuroImage, 84, 376-382. doi: 10.1016/j.neuroimage.2013.08.058 – reference: Wilcox, R. R. (2012). Introduction to robust estimation. San Diego, CA: Academic Press. – reference: Walsh, M. M., & Anderson, J. R. (2012). Learning from experience: Event-related potential correlates of reward processing, neural adaptation, and behavioral choice. Neuroscience and Biobehavioral Reviews, 36(8), 1870-1884. doi: 10.1016/j.neubiorev.2012.05.008 – reference: Eriksen, B. A., & Eriksen, C. W. (1974). Effects of noise letters upon the identification of a target letter in a nonsearch task. Perception & Psychophysics, 16(1), 143-149. doi: 10.3758/BF03203267 – reference: Wessel, J. R., & Ullsperger, M. (2011). Selection of independent components representing event-related brain potentials: A data-driven approach for greater objectivity. NeuroImage, 54(3), 2105-2115. doi: 10.1016/j.neuroimage.2010.10.033 – reference: Hoffmann, S., Labrenz, F., & Beste, C. (2014). Crosslinking EEG time-frequency decomposition and fMRI in error monitoring. Brain Structure & Function, 219, 595-605. doi: 10.1007/s00429-013-0521-y – reference: Bell, A. J., & Sejnowski, T. J. (1995). An information-maximization approach to blind separation and blind deconvolution. Neural Computation, 7(6), 1129-1159. doi: 10.1162/neco.1995.7.6.1129 – reference: Luu, P., Tucker, D. M., & Makeig, S. (2004). Frontal midline theta and the error-related negativity: Neurophysiological mechanisms of action regulation. Clinical Neurophysiology, 115(8), 1821-1835. doi: 10.1016/j.clinph.2004.03.031 – reference: Ruchsow, M., Grothe, J., Spitzer, M., & Kiefer, M. (2002). Human anterior cingulate cortex is activated by negative feedback: Evidence from event-related potentials in a guessing task. Neuroscience Letters, 325(3), 203-206.doi: 10.1016/S0304-3940(02)00288-4 – reference: Segalowitz, S. J., Santesso, D. L., Murphy, T. I., Homan, D., Chantziantoniou, D. K., & Khan, S. (2010). Retest reliability of medial frontal negativities during performance monitoring. Psychophysiology, 47(2), 260-270. doi: 10.1111/j.1469-8986.2009.00942.x – reference: Desjardins, J. A., & Segalowitz, S. J. (2013). Deconstructing the early visual electrocortical responses to face and house stimuli. Journal of Vision, 13(5), 1-18. doi: 10.1167/13.5.22 – reference: van Veen, V., Cohen, J. D., Botvinick, M. M., Stenger, V. A., & Carter, C. S. (2001). Anterior cingulate cortex, conflict monitoring, and levels of processing. NeuroImage, 14(6), 1302-1308. doi: 10.1006/nimg.2001.0923 – reference: van Driel, J., Ridderinkhof, K. R., & Cohen, M. X. (2012). Not all errors are alike: Theta and alpha EEG dynamics relate to differences in error-processing dynamics. Journal of Neuroscience, 32(47), 16795-16806. doi: 10.1523/JNEUROSCI.0802-12.2012 – reference: Makeig, S., Westerfield, M., Townsend, J., Jung, T. P., Courchesne, E., & Sejnowski, T. J. (1999). Functionally independent components of early event-related potentials in a visual spatial attention task. Philosophical Transactions of the Royal Society of London, 354(1387), 1135-1144. doi: 10.1098/rstb.1999.0469 – reference: Rousselet, G. A., & Pernet, C. R. (2011). Quantifying the time course of visual object processing using ERPs: It's time to up the game. Frontiers in Psychology, 2, 107. doi: 10.3389/fpsyg.2011.00107 – reference: Asada, H., Fukuda, Y., Tsunoda, S., Yamaguchi, M., & Tonoike, M. (1999). Frontal midline theta rhythms reflect alternative activation of prefrontal cortex and anterior cingulate cortex in humans. Neuroscience Letters, 274(1), 29-32. doi: 10.1016/s0304-3940(99)00679-5 – reference: Voytek, B., Kayser, A. S., Badre, D., Fegen, D., Chang, E. F., Crone, N. E., ... D'Esposito, M. (2015). Oscillatory dynamics coordinating human frontal networks in support of goal maintenance. Nature Neuroscience, 18, 1318-1324. doi: 10.1038/nn.4071 – reference: Roger, C., Bénar, C. G., Vidal, F., Hasbroucq, T., & Burle, B. (2010). Rostral cingulate zone and correct response monitoring: ICA and source localization evidences for the unicity of correct- and error-negativities. NeuroImage, 51(1), 391-403. doi: 10.1016/j.neuroimage.2010.02.005 – reference: Makeig, S., Debener, S., Onton, J., & Delorme, A. (2004). Mining event-related brain dynamics. Trends in Cognitive Sciences, 8(5), 204-210. doi: 10.1016/j.tics.2004.03.008 – reference: Delorme, A., & Makeig, S. (2004). EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. Journal of Neuroscience Methods, 134(1), 9-21. doi: 10.1016/j.jneumeth.2003.10.009 – reference: Holroyd, C. B., & Yeung, N. (2012). Motivation of extended behaviors by anterior cingulate cortex. Trends in Cognitive Sciences, 16(2), 122-128. doi: 10.1016/j.tics.2011.12.008 – reference: Tsujimoto, T., Shimazu, H., Isomura, Y., & Sasaki, K. (2010). Theta oscillations in primate prefrontal and anterior cingulate cortices in forewarned reaction time tasks. Journal of Neurophysiology, 103(2), 827-843. doi: 10.1152/jn.00358.2009 – reference: van Veen, V., & Carter, C. S. (2002). The anterior cingulate as a conflict monitor: fMRI and ERP studies. Physiology and Behavior, 77(4-5), 477-482. doi: 10.1016/S0031-9384(02)00930-7 – reference: Debener, S., Makeig, S., Delorme, A., & Engel, A. K. (2005). What is novel in the novelty oddball paradigm? Functional significance of the novelty P3 event-related potential as revealed by independent component analysis. Cognitive Brain Research, 22(3), 309-321. doi: 10.1016/j.cogbrainres.2004.09.006 – reference: Meltzer, J. A., Negishi, M., Mayes, L. C., & Constable, R. T. (2007). Individual differences in EEG theta and alpha dynamics during working memory correlate with fMRI responses across subjects. Clinical Neurophysiology, 118(11), 2419-2436. doi: 10.1016/j.clinph.2007.07.023 – reference: Lavallee, C. F., Meemken, M. T., Herrmann, C. S., & Huster, R. J. (2014). When holding your horses meets the deer in the headlights: Time-frequency characteristics of global and selective stopping under conditions of proactive and reactive control. Frontiers in Human Neuroscience, 8, 1-12. doi: 10.3389/fnhum.2014.00994 – reference: Gruendler, T. O. J., Ullsperger, M., & Huster, R. J. (2011). Event-related potential correlates of performance-monitoring in a lateralized time-estimation task. PLOS ONE, 6(10), e25591. doi: 10.1371/journal.pone.0025591 – reference: Cavanagh, J. F., & Shackman, A. J. (2015). Frontal midline theta reflects anxiety and cognitive control: Meta-analytic evidence. Journal of Physiology Paris, 109(1-3), 31-35. doi: 10.1016/j.jphysparis.2014.04.003 – reference: Cavanagh, J. F., Cohen, M. X., & Allen, J. J. B. (2009). Prelude to and resolution of an error: EEG phase synchrony reveals cognitive control dynamics during action monitoring. Journal of Neuroscience, 29(1), 98-105. doi: 10.1523/JNEUROSCI.4137-08.2009 – reference: Hauser, T. U., Iannaccone, R., Stämpfli, P., Drechsler, R., Brandeis, D., Walitza, S., & Brem, S. (2013). The feedback-related negativity (FRN) revisited: New insights into the localization, meaning and network organization. NeuroImage, 84C, 159-168. doi: 10.1016/j.neuroimage.2013.08.028 – reference: Cristofori, I., Moretti, L., Harquel, S., Posada, A., Deiana, G., Isnard, J., ... Sirigu, A. (2013). Theta signal as the neural signature of social exclusion. Cerebral Cortex, 23(10), 2437-2447. doi: 10.1093/cercor/bhs236 – reference: Rousselet, G. A., Husk, J. S., Bennett, P. J., & Sekuler, A. B. (2008). Time course and robustness of ERP object and face differences. Journal of Vision, 8(3), 1-18. doi: 10.1167/8.12.3 – reference: Gentsch, A., Ullsperger, P., & Ullsperger, M. (2009). Dissociable medial frontal negativities from a common monitoring system for self- and externally caused failure of goal achievement. NeuroImage, 47(4), 2023-2030. doi: 10.1016/j.neuroimage.2009.05.064 – reference: van Noordt, S. J. R., & Segalowitz, S. J. (2012). Performance monitoring and the medial prefrontal cortex: A review of individual differences and context effects as a window on self-regulation. Frontiers in Human Neuroscience, 6, 1-16. doi: 10.3389/fnhum.2012.00197 – reference: Ishii, R., Shinosaki, K., Ukai, S., Inouye, T., Ishihara, T., Yoshimine, T., ... Takeda, M. (1999). Medial prefrontal cortex generates frontal midline theta rhythm. NeuroReport, 10(4), 675-679. doi: 10.1097/00001756-199903170-00003 – reference: Reinhart, R. M. G., Zhu, J., Park, S., & Woodman, G. F. (2015). Synchronizing theta oscillations with direct-current stimulation strengthens adaptive control in the human brain. Proceedings of the National Academy of Sciences, 112(30), 201504196. doi: 10.1073/pnas.1504196112 – reference: Bokura, H., Yamaguchi, S., & Kobayashi, S. (2001). Electrophysiological correlates for response inhibition in a go/nogo task. Clinical Neurophysiology, 112(12), 2224-2232. doi: 10.1016/s1388-2457(01)00691-5 – reference: Gehring, W. J., Goss, B., Coles, M. G. H., Meyer, D. E., & Donchin, E. (1993). A neural system for error detection and compensation. Psychological Science, 4(6), 385-390. doi: 10.1111/j.1467-9280.1993.tb00586.x – reference: Hoffmann, S., & Falkenstein, M. (2010). Independent component analysis of erroneous and correct responses suggests online response control. Human Brain Mapping, 31(9), 1305-1315. doi: 10.1002/hbm.20937 – reference: Jung, T.-P., Humphries, C., Lee, T., & Makeig, S. (1998). Extended ICA removes artifacts from electroencephalographic recordings. Advances in Neural Information Processing Systems, 10, 894-900. – reference: Weissman, D. H., Gopalakrishnan, A., Hazlett, C. J., & Woldorff, M. G. (2005). Dorsal anterior cingulate cortex resolves conflict from distracting stimuli by boosting attention toward relevant events. Cerebral Cortex, 15(2), 229-237. doi: 10.1093/cercor/bhh125 – reference: Trujillo, L. T., & Allen, J. J. B. (2007). Theta EEG dynamics of the error-related negativity. Clinical Neurophysiology, 118(3), 645-668. doi: 10.1016/j.clinph.2006.11.009 – reference: Wilk, H. A., Ezekiel, F., & Morton, J. B. (2012). Brain regions associated with moment-to-moment adjustments in control and stable task-set maintenance. NeuroImage, 59(2), 1960-1967. doi: 10.1016/j.neuroimage.2011.09.011 – reference: Womelsdorf, T., Johnston, K., Vinck, M., & Everling, S. (2010). Theta-activity in anterior cingulate cortex predicts task rules and their adjustments following errors. Proceedings of the National Academy of Sciences of the USA, 107(11), 5248-5253. doi: 10.1073/pnas.0906194107 – reference: Scheeringa, R., Bastiaansen, M. C. M., Petersson, K. M., Oostenveld, R., Norris, D. G., & Hagoort, P. (2008). Frontal theta EEG activity correlates negatively with the default mode network in resting state. International Journal of Psychophysiology, 67(3), 242-251. doi: 10.1016/j.ijpsycho.2007.05.017 – reference: Cavanagh, J. F., Zambrano-Vazquez, L., & Allen, J. J. B. (2012). Theta lingua franca: A common mid-frontal substrate for action monitoring processes. Psychophysiology, 49(2), 220-238. doi: 10.1111/j.1469-8986.2011.01293.x – reference: Clayton, M. S., Yeung, N., & Cohen Kadosh, R. (2015). The roles of cortical oscillations in sustained attention. Trends in Cognitive Sciences, 19, 188-195. doi: 10.1016/j.tics.2015.02.004 – reference: Ma, J., Liu, C., & Chen, X. (2015). Emotional conflict processing induce boosted theta oscillation. Neuroscience Letters, 595, 69-73. doi: 10.1016/j.neulet.2015.04.009 – reference: Cavanagh, J. F., Eisenberg, I., Guitart-Masip, M., Huys, Q., & Frank, M. J. (2013). Frontal theta overrides Pavlovian learning biases. Journal of Neuroscience, 33(19), 8541-8548. doi: 10.1523/JNEUROSCI.5754-12.2013 – reference: van Noordt, S. J. R., White, L. O., Wu, J., Mayes, L. C., & Crowley, M. J. (2015). Social exclusion modulates event-related frontal theta and tracks ostracism distress in children. NeuroImage, 118, 248-255. doi: 10.1016/j.neuroimage.2015.05.085 – reference: Palmer, J. A., Kreutz-Delgado, K., & Makeig, S. (2011). AMICA: An adaptive mixture of independent component analyzers with shared components (Technical report). San Diego, CA: Swartz Center for Computational Neuroscience. – reference: van Noordt, S. J. R., Desjardins, J. A., & Segalowitz, S. J. (2015). Watch out! Medial frontal cortex is activated by cues signaling potential changes in response demands. NeuroImage, 114, 356-370. doi: 10.1016/j.neuroimage.2015.04.021 – reference: Holroyd, C. B., & Coles, M. G. H. (2008). Dorsal anterior cingulate cortex integrates reinforcement history to guide voluntary behavior. Cortex, 44(5), 548-559. doi: 10.1016/j.cortex.2007.08.013 – reference: Wessel, J. R., Danielmeier, C., Morton, J. B., & Ullsperger, M. (2012). Surprise and error: Common neuronal architecture for the processing of errors and novelty. Journal of Neuroscience, 32(22), 7528-7537. doi: 10.1523/JNEUROSCI.6352-11.2012 – reference: Cohen, M. X., & Donner, T. H. (2013). Midfrontal conflict-related theta-band power reflects neural oscillations that predict behavior. Journal of Neurophysiology, 110(12), 2752-2763. doi: 10.1152/jn.00479.2013 – reference: Luu, P., Tucker, D. M., & Stripling, R. (2007). Neural mechanisms for learning actions in context. Brain Research, 1179, 89-105. doi: 10.1016/j.brainres.2007.03.092 – reference: Oostenveld, R., Fries, P., Maris, E., & Schoffelen, J.-M. (2011). FieldTrip: Open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Computational Intelligence and Neuroscience, 156869. doi: 10.1155/2011/156869 – reference: Cohen, M. X., & Cavanagh, J. F. (2011). Single-trial regression elucidates the role of prefrontal theta oscillations in response conflict. Frontiers in Psychology, 2, 30. doi: 10.3389/fpsyg.2011.00030 – reference: Wilcox, R. R., & Keselman, H. J. (2003). Modern robust data analysis methods: Measures of central tendency. Psychological Methods, 8(3), 254-274. doi: 10.1037/1082-989X.8.3.254 – reference: Cavanagh, J. F., Frank, M. J., Klein, T. J., & Allen, J. J. B. (2010). Frontal theta links prediction errors to behavioral adaptation in reinforcement learning. NeuroImage, 49(4), 3198-3209. doi: 10.1016/j.neuroimage.2009.11.080 – reference: Cohen, M. X., Ridderinkhof, K. R., Haupt, S., Elger, C. E., & Fell, J. (2008). Medial frontal cortex and response conflict: Evidence from human intracranial EEG and medial frontal cortex lesion. Brain Research, 1238, 127-142. doi: 10.1016/j.brainres.2008.07.114 – reference: Reinhart, R. M. G., & Woodman, G. F. (2014). Causal control of medial-frontal cortex governs electrophysiological and behavioral indices of performance monitoring and learning. Journal of Neuroscience, 34(12), 4214-4227. doi: 10.1523/JNEUROSCI.5421-13.2014 – reference: Wilcox, R. R. (1998). How many discoveries have been lost by ignoring modern statistical methods? American Psychologist, 53(3), 300-314. – reference: Ridderinkhof, K. R., Ullsperger, M., Crone, E. A, & Nieuwenhuis, S. (2004). The role of the medial frontal cortex in cognitive control. Science, 306(5695), 443-447. doi: 10.1126/science.1100301 – reference: Wilcox, R. R. (2009). Comparing Pearson correlations: Dealing with heteroscedasticity and non-normality. Communications in Statistics-Simulation and Computation, 38(10), 2220-2234. doi: 10.1080/03610910903289151 – reference: Luft, C. D. B., Nolte, G., & Bhattacharya, J. (2013). High-learners present larger mid-frontal theta power and connectivity in response to incorrect performance feedback. Journal of Neuroscience, 33(5), 2029-2038. doi: 10.1523/JNEUROSCI.2565-12.2013 – reference: Nigbur, R., Ivanova, G., & Stürmer, B. (2011). Theta power as a marker for cognitive interference. Clinical Neurophysiology, 122(11), 2185-2194. doi: 10.1016/j.clinph.2011.03.030 – reference: Hajihosseini, A., & Holroyd, C. B. (2013). Frontal midline theta and N200 amplitude reflect complementary information about expectancy and outcome evaluation. Psychophysiology, 50(6), 550-562. doi: 10.1111/psyp.12040 – reference: Maurer, U., Brem, S., Liechti, M., Maurizio, S., Michels, L., & Brandeis, D. (2014). Frontal midline theta reflects individual task performance in a working memory task. Brain Topography, 127-134. doi: 10.1007/s10548-014-0361-y – reference: Womelsdorf, T., Vinck, M., Leung, L. S., & Everling, S. (2010). Selective theta-synchronization of choice-relevant information subserves goal-directed behavior. Frontiers in Human Neuroscience, 4, 210. doi: 10.3389/fnhum.2010.00210 – year: 2011 – volume: 47 start-page: 260 issue: 2 year: 2010 end-page: 270 article-title: Retest reliability of medial frontal negativities during performance monitoring publication-title: Psychophysiology – volume: 107 start-page: 5248 issue: 11 year: 2010 end-page: 5253 article-title: Theta‐activity in anterior cingulate cortex predicts task rules and their adjustments following errors publication-title: Proceedings of the National Academy of Sciences of the USA – volume: 19 start-page: 188 year: 2015 end-page: 195 article-title: The roles of cortical oscillations in sustained attention publication-title: Trends in Cognitive Sciences – volume: 118 start-page: 2419 issue: 11 year: 2007 end-page: 2436 article-title: Individual differences in EEG theta and alpha dynamics during working memory correlate with fMRI responses across subjects publication-title: Clinical Neurophysiology – volume: 295 start-page: 690 issue: 5555 year: 2002 end-page: 694 article-title: Dynamic brain sources of visual evoked responses publication-title: Science – volume: 54 start-page: 2105 issue: 3 year: 2011 end-page: 2115 article-title: Selection of independent components representing event‐related brain potentials: A data‐driven approach for greater objectivity publication-title: NeuroImage – year: 2005 – volume: 84C start-page: 159 year: 2013 end-page: 168 article-title: The feedback‐related negativity (FRN) revisited: New insights into the localization, meaning and network organization publication-title: NeuroImage – volume: 32 start-page: 7528 issue: 22 year: 2012 end-page: 7537 article-title: Surprise and error: Common neuronal architecture for the processing of errors and novelty publication-title: Journal of Neuroscience – volume: 49 start-page: 3198 issue: 4 year: 2010 end-page: 3209 article-title: Frontal theta links prediction errors to behavioral adaptation in reinforcement learning publication-title: NeuroImage – volume: 10 start-page: 675 issue: 4 year: 1999 end-page: 679 article-title: Medial prefrontal cortex generates frontal midline theta rhythm publication-title: NeuroReport – volume: 112 start-page: 201504196 issue: 30 year: 2015 article-title: Synchronizing theta oscillations with direct‐current stimulation strengthens adaptive control in the human brain publication-title: Proceedings of the National Academy of Sciences – volume: 325 start-page: 203 issue: 3 year: 2002 end-page: 206 article-title: Human anterior cingulate cortex is activated by negative feedback: Evidence from event‐related potentials in a guessing task publication-title: Neuroscience Letters – volume: 1179 start-page: 89 year: 2007 end-page: 105 article-title: Neural mechanisms for learning actions in context publication-title: Brain Research – volume: 2 start-page: 107 year: 2011 article-title: Quantifying the time course of visual object processing using ERPs: It's time to up the game publication-title: Frontiers in Psychology – volume: 49 start-page: 220 issue: 2 year: 2012 end-page: 238 article-title: Theta lingua franca: A common mid‐frontal substrate for action monitoring processes publication-title: Psychophysiology – volume: 1238 start-page: 127 year: 2008 end-page: 142 article-title: Medial frontal cortex and response conflict: Evidence from human intracranial EEG and medial frontal cortex lesion publication-title: Brain Research – volume: 15 start-page: 229 issue: 2 year: 2005 end-page: 237 article-title: Dorsal anterior cingulate cortex resolves conflict from distracting stimuli by boosting attention toward relevant events publication-title: Cerebral Cortex – volume: 47 start-page: 2023 issue: 4 year: 2009 end-page: 2030 article-title: Dissociable medial frontal negativities from a common monitoring system for self‐ and externally caused failure of goal achievement publication-title: NeuroImage – volume: 53 start-page: 300 issue: 3 year: 1998 end-page: 314 article-title: How many discoveries have been lost by ignoring modern statistical methods? publication-title: American Psychologist – volume: 89 start-page: 1107 issue: 7 year: 2001 end-page: 1122 article-title: Imaging brain dynamics using independent component analysis publication-title: Proceedings of the IEEE – volume: 84 start-page: 376 year: 2014 end-page: 382 article-title: Reward expectation and prediction error in human medial frontal cortex: An EEG study publication-title: NeuroImage – volume: 118 start-page: 645 issue: 3 year: 2007 end-page: 668 article-title: Theta EEG dynamics of the error‐related negativity publication-title: Clinical Neurophysiology – volume: 103 start-page: 827 issue: 2 year: 2010 end-page: 843 article-title: Theta oscillations in primate prefrontal and anterior cingulate cortices in forewarned reaction time tasks publication-title: Journal of Neurophysiology – volume: 51 start-page: 391 issue: 1 year: 2010 end-page: 403 article-title: Rostral cingulate zone and correct response monitoring: ICA and source localization evidences for the unicity of correct‐ and error‐negativities publication-title: NeuroImage – volume: 50 start-page: 550 issue: 6 year: 2013 end-page: 562 article-title: Frontal midline theta and N200 amplitude reflect complementary information about expectancy and outcome evaluation publication-title: Psychophysiology – volume: 31 start-page: 1305 issue: 9 year: 2010 end-page: 1315 article-title: Independent component analysis of erroneous and correct responses suggests online response control publication-title: Human Brain Mapping – volume: 6 start-page: 1 year: 2012 end-page: 16 article-title: Performance monitoring and the medial prefrontal cortex: A review of individual differences and context effects as a window on self‐regulation publication-title: Frontiers in Human Neuroscience – volume: 112 start-page: 2224 issue: 12 year: 2001 end-page: 2232 article-title: Electrophysiological correlates for response inhibition in a go/nogo task publication-title: Clinical Neurophysiology – volume: 109 start-page: 31 issue: 1–3 year: 2015 end-page: 35 article-title: Frontal midline theta reflects anxiety and cognitive control: Meta‐analytic evidence publication-title: Journal of Physiology Paris – volume: 14 start-page: 1302 issue: 6 year: 2001 end-page: 1308 article-title: Anterior cingulate cortex, conflict monitoring, and levels of processing publication-title: NeuroImage – volume: 22 start-page: 309 issue: 3 year: 2005 end-page: 321 article-title: What is novel in the novelty oddball paradigm? Functional significance of the novelty P3 event‐related potential as revealed by independent component analysis publication-title: Cognitive Brain Research – volume: 354 start-page: 1135 issue: 1387 year: 1999 end-page: 1144 article-title: Functionally independent components of early event‐related potentials in a visual spatial attention task publication-title: Philosophical Transactions of the Royal Society of London – volume: 110 start-page: 2752 issue: 12 year: 2013 end-page: 2763 article-title: Midfrontal conflict‐related theta‐band power reflects neural oscillations that predict behavior publication-title: Journal of Neurophysiology – volume: 274 start-page: 29 issue: 1 year: 1999 end-page: 32 article-title: Frontal midline theta rhythms reflect alternative activation of prefrontal cortex and anterior cingulate cortex in humans publication-title: Neuroscience Letters – volume: 6 start-page: e25591 issue: 10 year: 2011 article-title: Event‐related potential correlates of performance‐monitoring in a lateralized time‐estimation task publication-title: PLOS ONE – volume: 2 start-page: 30 year: 2011 article-title: Single‐trial regression elucidates the role of prefrontal theta oscillations in response conflict publication-title: Frontiers in Psychology – start-page: 1 year: 2008 end-page: 53 – volume: 118 start-page: 248 year: 2015 end-page: 255 article-title: Social exclusion modulates event‐related frontal theta and tracks ostracism distress in children publication-title: NeuroImage – volume: 16 start-page: 122 issue: 2 year: 2012 end-page: 128 article-title: Motivation of extended behaviors by anterior cingulate cortex publication-title: Trends in Cognitive Sciences – volume: 122 start-page: 2185 issue: 11 year: 2011 end-page: 2194 article-title: Theta power as a marker for cognitive interference publication-title: Clinical Neurophysiology – volume: 45 start-page: 1199 issue: 4 year: 2009 end-page: 1211 article-title: Identifying reliable independent components via split‐half comparisons publication-title: NeuroImage – volume: 59 start-page: 1960 issue: 2 year: 2012 end-page: 1967 article-title: Brain regions associated with moment‐to‐moment adjustments in control and stable task‐set maintenance publication-title: NeuroImage – volume: 18 start-page: 1318 year: 2015 end-page: 1324 article-title: Oscillatory dynamics coordinating human frontal networks in support of goal maintenance publication-title: Nature Neuroscience – start-page: 156869 year: 2011 article-title: FieldTrip: Open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data publication-title: Computational Intelligence and Neuroscience – volume: 8 start-page: 204 issue: 5 year: 2004 end-page: 210 article-title: Mining event‐related brain dynamics publication-title: Trends in Cognitive Sciences – volume: 8 start-page: 1 issue: 3 year: 2008 end-page: 18 article-title: Time course and robustness of ERP object and face differences publication-title: Journal of Vision – volume: 34 start-page: 4214 issue: 12 year: 2014 end-page: 4227 article-title: Causal control of medial‐frontal cortex governs electrophysiological and behavioral indices of performance monitoring and learning publication-title: Journal of Neuroscience – volume: 306 start-page: 443 issue: 5695 year: 2004 end-page: 447 article-title: The role of the medial frontal cortex in cognitive control publication-title: Science – volume: 13 start-page: 1 issue: 5 year: 2013 end-page: 18 article-title: Deconstructing the early visual electrocortical responses to face and house stimuli publication-title: Journal of Vision – volume: 33 start-page: 8541 issue: 19 year: 2013 end-page: 8548 article-title: Frontal theta overrides Pavlovian learning biases publication-title: Journal of Neuroscience – start-page: 127 year: 2014 end-page: 134 article-title: Frontal midline theta reflects individual task performance in a working memory task publication-title: Brain Topography – volume: 10 start-page: 894 year: 1998 end-page: 900 article-title: Extended ICA removes artifacts from electroencephalographic recordings publication-title: Advances in Neural Information Processing Systems – volume: 7 start-page: 1129 issue: 6 year: 1995 end-page: 1159 article-title: An information‐maximization approach to blind separation and blind deconvolution publication-title: Neural Computation – volume: 115 start-page: 1821 issue: 8 year: 2004 end-page: 1835 article-title: Frontal midline theta and the error‐related negativity: Neurophysiological mechanisms of action regulation publication-title: Clinical Neurophysiology – volume: 67 start-page: 242 issue: 3 year: 2008 end-page: 251 article-title: Frontal theta EEG activity correlates negatively with the default mode network in resting state publication-title: International Journal of Psychophysiology – volume: 134 start-page: 9 issue: 1 year: 2004 end-page: 21 article-title: EEGLAB: An open source toolbox for analysis of single‐trial EEG dynamics including independent component analysis publication-title: Journal of Neuroscience Methods – volume: 25 start-page: 8402 issue: 37 year: 2005 end-page: 8406 article-title: Human anterior cingulate cortex neurons encode cognitive and emotional demands publication-title: Journal of Neuroscience – volume: 4 start-page: 385 issue: 6 year: 1993 end-page: 390 article-title: A neural system for error detection and compensation publication-title: Psychological Science – year: 2016 – volume: 77 start-page: 477 issue: 4–5 year: 2002 end-page: 482 article-title: The anterior cingulate as a conflict monitor: fMRI and ERP studies publication-title: Physiology and Behavior – volume: 219 start-page: 595 year: 2014 end-page: 605 article-title: Crosslinking EEG time–frequency decomposition and fMRI in error monitoring publication-title: Brain Structure & Function – year: 2012 – volume: 23 start-page: 8002 issue: 22 year: 2003 end-page: 8012 article-title: Neural coding of “attention for action” and “response selection” in primate anterior cingulate cortex publication-title: Journal of Neuroscience – volume: 44 start-page: 548 issue: 5 year: 2008 end-page: 559 article-title: Dorsal anterior cingulate cortex integrates reinforcement history to guide voluntary behavior publication-title: Cortex – volume: 85 start-page: 873 issue: Pt 2 year: 2014 end-page: 887 article-title: Developmental change in EEG theta activity in the medial prefrontal cortex during response control publication-title: NeuroImage – volume: 114 start-page: 356 year: 2015 end-page: 370 article-title: Watch out! Medial frontal cortex is activated by cues signaling potential changes in response demands publication-title: NeuroImage – volume: 36 start-page: 1870 issue: 8 year: 2012 end-page: 1884 article-title: Learning from experience: Event‐related potential correlates of reward processing, neural adaptation, and behavioral choice publication-title: Neuroscience and Biobehavioral Reviews – volume: 29 start-page: 98 issue: 1 year: 2009 end-page: 105 article-title: Prelude to and resolution of an error: EEG phase synchrony reveals cognitive control dynamics during action monitoring publication-title: Journal of Neuroscience – volume: 16 start-page: 143 issue: 1 year: 1974 end-page: 149 article-title: Effects of noise letters upon the identification of a target letter in a nonsearch task publication-title: Perception & Psychophysics – volume: 8 start-page: 254 issue: 3 year: 2003 end-page: 274 article-title: Modern robust data analysis methods: Measures of central tendency publication-title: Psychological Methods – volume: 23 start-page: 2437 issue: 10 year: 2013 end-page: 2447 article-title: Theta signal as the neural signature of social exclusion publication-title: Cerebral Cortex – volume: 33 start-page: 2029 issue: 5 year: 2013 end-page: 2038 article-title: High‐learners present larger mid‐frontal theta power and connectivity in response to incorrect performance feedback publication-title: Journal of Neuroscience – volume: 38 start-page: 2220 issue: 10 year: 2009 end-page: 2234 article-title: Comparing Pearson correlations: Dealing with heteroscedasticity and non‐normality publication-title: Communications in Statistics—Simulation and Computation – volume: 7 start-page: 367 issue: 4 year: 2007 end-page: 379 article-title: Anterior cingulate cortex and conflict detection: An update of theory and data publication-title: Cognitive, Affective & Behavioral Neuroscience – volume: 595 start-page: 69 year: 2015 end-page: 73 article-title: Emotional conflict processing induce boosted theta oscillation publication-title: Neuroscience Letters – volume: 8 start-page: 1 year: 2014 end-page: 12 article-title: When holding your horses meets the deer in the headlights: Time‐frequency characteristics of global and selective stopping under conditions of proactive and reactive control publication-title: Frontiers in Human Neuroscience – volume: 4 start-page: 210 year: 2010 article-title: Selective theta‐synchronization of choice‐relevant information subserves goal‐directed behavior publication-title: Frontiers in Human Neuroscience – volume: 32 start-page: 16795 issue: 47 year: 2012 end-page: 16806 article-title: Not all errors are alike: Theta and alpha EEG dynamics relate to differences in error‐processing dynamics publication-title: Journal of Neuroscience – ident: e_1_2_6_62_1 doi: 10.1523/JNEUROSCI.0802-12.2012 – ident: e_1_2_6_6_1 doi: 10.1523/JNEUROSCI.4137-08.2009 – ident: e_1_2_6_25_1 doi: 10.1111/psyp.12040 – volume-title: Introduction to robust estimation year: 2012 ident: e_1_2_6_77_1 – ident: e_1_2_6_14_1 doi: 10.1016/j.brainres.2008.07.114 – ident: e_1_2_6_9_1 doi: 10.1016/j.jphysparis.2014.04.003 – ident: e_1_2_6_43_1 doi: 10.1126/science.1066168 – ident: e_1_2_6_38_1 doi: 10.1016/j.clinph.2004.03.031 – ident: e_1_2_6_39_1 doi: 10.1016/j.brainres.2007.03.092 – ident: e_1_2_6_18_1 doi: 10.1016/j.jneumeth.2003.10.009 – ident: e_1_2_6_12_1 doi: 10.3389/fpsyg.2011.00030 – ident: e_1_2_6_15_1 doi: 10.1093/cercor/bhs236 – ident: e_1_2_6_80_1 doi: 10.1073/pnas.0906194107 – ident: e_1_2_6_79_1 doi: 10.1016/j.neuroimage.2011.09.011 – ident: e_1_2_6_7_1 doi: 10.1523/JNEUROSCI.5754-12.2013 – ident: e_1_2_6_40_1 doi: 10.1016/j.neulet.2015.04.009 – ident: e_1_2_6_54_1 doi: 10.1167/8.12.3 – ident: e_1_2_6_74_1 doi: 10.1037/0003-066X.53.3.300 – ident: e_1_2_6_23_1 doi: 10.1016/j.neuroimage.2008.12.038 – ident: e_1_2_6_3_1 doi: 10.1162/neco.1995.7.6.1129 – ident: e_1_2_6_26_1 doi: 10.1016/j.neuroimage.2013.08.028 – ident: e_1_2_6_70_1 doi: 10.1016/j.neubiorev.2012.05.008 – ident: e_1_2_6_73_1 doi: 10.1016/j.neuroimage.2010.10.033 – ident: e_1_2_6_58_1 doi: 10.1111/j.1469-8986.2009.00942.x – ident: e_1_2_6_46_1 doi: 10.1016/j.clinph.2007.07.023 – ident: e_1_2_6_16_1 doi: 10.1523/JNEUROSCI.2315-05.2005 – ident: e_1_2_6_55_1 doi: 10.3389/fpsyg.2011.00107 – ident: e_1_2_6_17_1 doi: 10.1016/j.cogbrainres.2004.09.006 – ident: e_1_2_6_35_1 doi: 10.3389/fnhum.2014.00994 – ident: e_1_2_6_56_1 doi: 10.1016/S0304-3940(02)00288-4 – ident: e_1_2_6_76_1 doi: 10.1080/03610910903289151 – ident: e_1_2_6_19_1 doi: 10.1167/13.5.22 – ident: e_1_2_6_37_1 doi: 10.1523/JNEUROSCI.2565-12.2013 – volume: 10 start-page: 894 year: 1998 ident: e_1_2_6_33_1 article-title: Extended ICA removes artifacts from electroencephalographic recordings publication-title: Advances in Neural Information Processing Systems – ident: e_1_2_6_27_1 doi: 10.1002/hbm.20937 – ident: e_1_2_6_65_1 doi: 10.3389/fnhum.2012.00197 – ident: e_1_2_6_5_1 doi: 10.3758/cabn.7.4.367 – ident: e_1_2_6_24_1 doi: 10.1371/journal.pone.0025591 – ident: e_1_2_6_28_1 doi: 10.1007/s00429-013-0521-y – ident: e_1_2_6_71_1 doi: 10.1093/cercor/bhh125 – ident: e_1_2_6_60_1 doi: 10.1016/j.clinph.2006.11.009 – ident: e_1_2_6_22_1 doi: 10.1016/j.neuroimage.2009.05.064 – ident: e_1_2_6_20_1 doi: 10.3758/BF03203267 – ident: e_1_2_6_57_1 doi: 10.1016/j.ijpsycho.2007.05.017 – ident: e_1_2_6_31_1 doi: 10.1097/00001756-199903170-00003 – ident: e_1_2_6_42_1 doi: 10.1093/oxfordhb/9780195374148.001.0001 – ident: e_1_2_6_2_1 doi: 10.1016/s0304-3940(99)00679-5 – ident: e_1_2_6_30_1 doi: 10.1016/j.tics.2011.12.008 – ident: e_1_2_6_45_1 doi: 10.1007/s10548-014-0361-y – ident: e_1_2_6_63_1 doi: 10.1016/j.neuroimage.2016.09.054 – ident: e_1_2_6_78_1 doi: 10.1037/1082-989X.8.3.254 – ident: e_1_2_6_50_1 doi: 10.1523/JNEUROSCI.5421-13.2014 – ident: e_1_2_6_59_1 doi: 10.1016/j.neuroimage.2013.08.058 – ident: e_1_2_6_66_1 doi: 10.1016/j.neuroimage.2015.05.085 – ident: e_1_2_6_32_1 doi: 10.1523/JNEUROSCI.4652-10.2011 – ident: e_1_2_6_61_1 doi: 10.1152/jn.00358.2009 – volume-title: AMICA: An adaptive mixture of independent component analyzers with shared components (Technical report) year: 2011 ident: e_1_2_6_49_1 – ident: e_1_2_6_69_1 doi: 10.1038/nn.4071 – ident: e_1_2_6_4_1 doi: 10.1016/s1388-2457(01)00691-5 – ident: e_1_2_6_47_1 doi: 10.1016/j.clinph.2011.03.030 – ident: e_1_2_6_67_1 doi: 10.1016/S0031-9384(02)00930-7 – ident: e_1_2_6_8_1 doi: 10.1016/j.neuroimage.2009.11.080 – ident: e_1_2_6_13_1 doi: 10.1152/jn.00479.2013 – ident: e_1_2_6_52_1 doi: 10.1126/science.1100301 – ident: e_1_2_6_36_1 doi: 10.1016/j.neuroimage.2013.08.054 – ident: e_1_2_6_44_1 doi: 10.1098/rstb.1999.0469 – ident: e_1_2_6_68_1 doi: 10.1006/nimg.2001.0923 – ident: e_1_2_6_51_1 doi: 10.1073/pnas.1504196112 – ident: e_1_2_6_81_1 doi: 10.3389/fnhum.2010.00210 – ident: e_1_2_6_53_1 doi: 10.1016/j.neuroimage.2010.02.005 – ident: e_1_2_6_10_1 doi: 10.1111/j.1469-8986.2011.01293.x – ident: e_1_2_6_34_1 doi: 10.1109/5.939827 – volume-title: Introduction to robust estimation and hypothesis testing year: 2005 ident: e_1_2_6_75_1 – ident: e_1_2_6_64_1 doi: 10.1016/j.neuroimage.2015.04.021 – ident: e_1_2_6_21_1 doi: 10.1111/j.1467-9280.1993.tb00586.x – ident: e_1_2_6_29_1 doi: 10.1016/j.cortex.2007.08.013 – ident: e_1_2_6_72_1 doi: 10.1523/JNEUROSCI.6352-11.2012 – ident: e_1_2_6_41_1 doi: 10.1016/j.tics.2004.03.008 – ident: e_1_2_6_48_1 doi: 10.1155/2011/156869 – ident: e_1_2_6_11_1 doi: 10.1016/j.tics.2015.02.004 |
SSID | ssj0009122 |
Score | 2.3995867 |
Snippet | Theta oscillations in the EEG have been linked to several ERPs that are elicited during performance‐monitoring tasks, including the error‐related negativity... Theta oscillations in the EEG have been linked to several ERPs that are elicited during performance-monitoring tasks, including the error-related negativity... |
SourceID | proquest pubmed crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1317 |
SubjectTerms | Adult Classification Electroencephalography Evoked Potentials - physiology Executive Function - physiology Female Frontal Lobe - physiology Humans Independent component analysis Male Medial frontal cortex Neuropsychology Performance monitoring Psychomotor Performance - physiology Robust estimation Theta Theta Rhythm - physiology Young Adult |
Title | A functional classification of medial frontal negativity ERPs: Theta oscillations and single subject effects |
URI | https://api.istex.fr/ark:/67375/WNG-52156013-R/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fpsyp.12689 https://www.ncbi.nlm.nih.gov/pubmed/27338558 https://www.proquest.com/docview/1810523798 https://www.proquest.com/docview/1811294011 https://www.proquest.com/docview/1815700278 |
Volume | 53 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Za9wwEBYheelLr_TYNg0qLYEWvNiWJdulL5tjGwoNy7ah6UMROvOQrXeJd6Hpr--MfOQgBNonGzQ2sjxjfRp_-oaQt8qlZcJsFiUZV1EmCh6VJldR7lwM_uyEDtUavhyJw-Ps8wk_WSMfu70wjT5En3DDyAjfawxwpesrQb6oLxbDJBUF7t5DshYioumldlSZtFLhWRFxwJCtNinSeC4vvTYbbeDA_r4Nal5HrmHqGT8gP7tON4yTs-FqqYfmzw09x_99qofkfotJ6ahxokdkzVWPyeaogvX4rwu6QwNLNKTfN8lsRHEqbDKI1CD2RrJReL907mmzE4V61EWAY-VO2_oU9GA6qT9QcMuloqigOWtZeFRVlmLGYuZovdKYF6Ity-QJOR4ffNs7jNqKDZERLCsjVto4M6XxKTeJUHHmIfwRMSXaWW4UzJjaOKN9nhZGAdoTQtvYFRZgmGXWsadkvZpX7jmhLvXMi5K7OHYZt0x5ZbU2xpVaM-7NgLzr3pw0rZw5VtWYyW5Zg0Mpw1AOyJvedtGIeNxqtRMcoDdR52dIe8u5_H70SQLOwdUrk9MB2eo8RLYRX0tASphhz8tiQF73zRCr-ANGVW6-CjYAr2BFm9xpgyUH0hzu86zxvr5DADVZwTm0vA8-dMfDyMnXH5Nw9uJfjF-Se4AIRUOi2yLry_OVewWoa6m3ycZod393vB2i7C9J3ivz |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF5Be4ALr_IIFFgEqgSSI9vrXXu5RaglQBtFoRXtabUvc2hwojqRKL-emfUmpaiqBCdb8tjyrme834w_f0PIG-1zmTFXJFnBdVKIiifSljopvU_Bn70woVvDwUgMj4rPx_w4cnPwX5hOH2JdcMPICO9rDHAsSP8R5fP2fN7PclHJm2QTW3qHjGpyoR4lsygWXlQJBxQZ1UmRyHNx7qX1aBOn9udVYPMydg2Lz97drsNqGzQLkXNy2l8uTN_--kvR8b_HdY_cibCUDjo_uk9u-OYB2Ro0kJL_OKc7NBBFQwV-i0wHFFfDrohILcJv5BuFR0xnNe1-RqE1SiPAtvHfY4sKujsZt-8peOZCUxTRnEYiHtWNo1i0mHraLg2WhmgkmjwkR3u7hx-GSWzakFjBCpkw6dLCSlvn3GZCp0UNbwAETZnxjlsNi6ax3pq6zCurAfAJYVzqKwdIzDHn2SOy0cwa_4RQn9esFpL7NPUFd0zX2hljrZfGMF7bHnm7enTKRkVzbKwxVavMBqdShanskddr23mn43Gl1U7wgLWJPjtF5lvJ1bfRRwVQBxNYpiY9sr1yERWDvlUAlrDIXsqqR16tD0O44jcY3fjZMtgAwoKkNrvWBrsO5CVc53HnfusbArTJKs7hyLvgRNcMRo2_nozD3tN_MX5Jbg0PD_bV_qfRl2fkNgBE0XHqtsnG4mzpnwMIW5gXIdR-A297Lpw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZaxRBEG5iAuJLPOKxGrVFCSjMMjN9zLT4spis8VqW1ZD4IE2fecg6u2R3wfjr7eo5YiQE9GkGumboo2r6q5rqrxB6oVwuMmJpklGmEspLlghTqKRwLg367LiO1Ro-j_j-Af1wxI7W0Jv2LEzND9EF3MAy4vcaDHxu_R9GPl-czftZzktxDW1Qnpag07uTc_IokTVc4bRMWACRDTkp5PGcP3thO9qAmf15Gda8CF3j3jO8ib63va5TTk76q6Xum19_ETr-77Buoc0GlOJBrUW30Zqr7qCtQRUc8h9neAfHNNEYf99C0wGGvbAOIWID4BuyjeIC45nH9VEU7IEYIVwrd9wUqMB7k_HiNQ56uVQYKDSnTRoeVpXFELKYOrxYaQgM4SbN5C46GO59fbufNCUbEsMJFQkRNqVGGJ8zk3GVUh_sHyBTpp1lRoUtUxtntC_y0qgA9zjXNnWlDTjMEuvIPbRezSr3AGGXe-K5YC5NHWWWKK-s1sY4oTVh3vTQy3blpGn4zKGsxlS2fg1MpYxT2UPPO9l5zeJxqdROVIBORJ2eQN5bweTh6J0MQAfcVyInPbTdaohsTH4hA1SCEHshyh561jUHY4U_MKpys1WUCfgquLTZlTJQcyAvwnvu19rXdShgTVIyFlpeRR26YjBy_OXbON49_Bfhp-j6eHcoP70ffXyEbgR0yOuEum20vjxduccBgS31k2hovwHogi1U |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+functional+classification+of+medial+frontal+negativity+ERPs%3A+Theta+oscillations+and+single+subject+effects&rft.jtitle=Psychophysiology&rft.au=Van+Noordt%2C+Stefon+J.R.&rft.au=Campopiano%2C+Allan&rft.au=Segalowitz%2C+Sidney+J.&rft.date=2016-09-01&rft.issn=0048-5772&rft.eissn=1469-8986&rft.volume=53&rft.issue=9&rft.spage=1317&rft.epage=1334&rft_id=info:doi/10.1111%2Fpsyp.12689&rft.externalDBID=10.1111%252Fpsyp.12689&rft.externalDocID=PSYP12689 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0048-5772&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0048-5772&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0048-5772&client=summon |