Human representation of multimodal distributions as clusters of samples

Behavioral and neuroimaging evidence shows that human decisions are sensitive to the statistical regularities (mean, variance, skewness, etc.) of reward distributions. However, it is unclear what representations human observers form to approximate reward distributions, or probability distributions i...

Full description

Saved in:
Bibliographic Details
Published inPLoS computational biology Vol. 15; no. 5; p. e1007047
Main Authors Sun, Jingwei, Li, Jian, Zhang, Hang
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 01.05.2019
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Behavioral and neuroimaging evidence shows that human decisions are sensitive to the statistical regularities (mean, variance, skewness, etc.) of reward distributions. However, it is unclear what representations human observers form to approximate reward distributions, or probability distributions in general. When the possible values of a probability distribution are numerous, it is cognitively costly and perhaps unrealistic to maintain in mind the probability of each possible value. Here we propose a Clusters of Samples (CoS) representation model: The samples of the to-be-represented distribution are classified into a small number of clusters and only the centroids and relative weights of the clusters are retained for future use. We tested the behavioral relevance of CoS in four experiments. On each trial, human subjects reported the mean and mode of a sequentially presented multimodal distribution of spatial positions or orientations. By varying the global and local features of the distributions, we observed systematic errors in the reported mean and mode. We found that our CoS representation of probability distributions outperformed alternative models in accounting for subjects' response patterns. The ostensible influence of positive/negative skewness on the over/under estimation of the reported mean, analogous to the "skewness preference" phenomenon in decisions, could be well explained by models based on CoS.
Bibliography:new_version
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
The authors have declared that no competing interests exist.
ISSN:1553-7358
1553-734X
1553-7358
DOI:10.1371/journal.pcbi.1007047