Exposure-dependent control of malaria-induced inflammation in children

In malaria-naïve individuals, Plasmodium falciparum infection results in high levels of parasite-infected red blood cells (iRBCs) that trigger systemic inflammation and fever. Conversely, individuals in endemic areas who are repeatedly infected are often asymptomatic and have low levels of iRBCs, ev...

Full description

Saved in:
Bibliographic Details
Published inPLoS pathogens Vol. 10; no. 4; p. e1004079
Main Authors Portugal, Silvia, Moebius, Jacqueline, Skinner, Jeff, Doumbo, Safiatou, Doumtabe, Didier, Kone, Younoussou, Dia, Seydou, Kanakabandi, Kishore, Sturdevant, Daniel E, Virtaneva, Kimmo, Porcella, Stephen F, Li, Shanping, Doumbo, Ogobara K, Kayentao, Kassoum, Ongoiba, Aissata, Traore, Boubacar, Crompton, Peter D
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 01.04.2014
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In malaria-naïve individuals, Plasmodium falciparum infection results in high levels of parasite-infected red blood cells (iRBCs) that trigger systemic inflammation and fever. Conversely, individuals in endemic areas who are repeatedly infected are often asymptomatic and have low levels of iRBCs, even young children. We hypothesized that febrile malaria alters the immune system such that P. falciparum re-exposure results in reduced production of pro-inflammatory cytokines/chemokines and enhanced anti-parasite effector responses compared to responses induced before malaria. To test this hypothesis we used a systems biology approach to analyze PBMCs sampled from healthy children before the six-month malaria season and the same children seven days after treatment of their first febrile malaria episode of the ensuing season. PBMCs were stimulated with iRBC in vitro and various immune parameters were measured. Before the malaria season, children's immune cells responded to iRBCs by producing pro-inflammatory mediators such as IL-1β, IL-6 and IL-8. Following malaria there was a marked shift in the response to iRBCs with the same children's immune cells producing lower levels of pro-inflammatory cytokines and higher levels of anti-inflammatory cytokines (IL-10, TGF-β). In addition, molecules involved in phagocytosis and activation of adaptive immunity were upregulated after malaria as compared to before. This shift was accompanied by an increase in P. falciparum-specific CD4+Foxp3- T cells that co-produce IL-10, IFN-γ and TNF; however, after the subsequent six-month dry season, a period of markedly reduced malaria transmission, P. falciparum-inducible IL-10 production remained partially upregulated only in children with persistent asymptomatic infections. These findings suggest that in the face of P. falciparum re-exposure, children acquire exposure-dependent P. falciparum-specific immunoregulatory responses that dampen pathogenic inflammation while enhancing anti-parasite effector mechanisms. These data provide mechanistic insight into the observation that P. falciparum-infected children in endemic areas are often afebrile and tend to control parasite replication.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-News-2
ObjectType-Feature-3
content type line 23
Conceived and designed the experiments: SP JM SDo DD OKD KKay AO BT PDC. Performed the experiments: SP JM SDo DD YK SDi KKan DES KV SFP SL KKay AO. Analyzed the data: SP JM JS PDC. Wrote the paper: SP JM PDC.
The authors have declared that no competing interests exist.
ISSN:1553-7374
1553-7366
1553-7374
DOI:10.1371/journal.ppat.1004079