Suppression of miR-221 inhibits glioma cells proliferation and invasion via targeting SEMA3B

Gliomas are the most common primary tumors in the central nervous system. Due to complicated signaling pathways involved in glioma progression, effective targets for treatment and biomarkers for prognosis prediction are still scant. In this study we revealed that a new microRNA (miR), the miR-221, w...

Full description

Saved in:
Bibliographic Details
Published inBiological research Vol. 48; no. 1; p. 37
Main Authors Cai, Guilan, Qiao, Shanshan, Chen, Kui
Format Journal Article
LanguageEnglish
Published England BioMed Central Ltd 22.07.2015
BioMed Central
Sociedad de Biología de Chile
BMC
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Gliomas are the most common primary tumors in the central nervous system. Due to complicated signaling pathways involved in glioma progression, effective targets for treatment and biomarkers for prognosis prediction are still scant. In this study we revealed that a new microRNA (miR), the miR-221, was highly expressed in the glioma cells, and suppression of miR-221 resulted in decreased cellular proliferation, migration, and invasion in glioma cells. Mechanistic experiments validated that miR-221 participates in regulating glioma cells proliferation and invasion via suppression of a direct target gene, the Semaphorin 3B (SEMA3B). The rescue experiment with miR-221 and SEMA3B both knockdown results in significant reversion of miR-221 induced phenotypes. Taken together, our findings highlight an unappreciated role for miR-221 and SEMA3B in glioma.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0717-6287
0716-9760
0717-6287
DOI:10.1186/s40659-015-0030-y