Using operando techniques to understand and design high performance and stable alkaline membrane fuel cells
There is a need to understand the water dynamics of alkaline membrane fuel cells under various operating conditions to create electrodes that enable high performance and stable, long-term operation. Here we show, via operando neutron imaging and operando micro X-ray computed tomography, visualizatio...
Saved in:
Published in | Nature communications Vol. 11; no. 1; pp. 3561 - 10 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
16.07.2020
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | There is a need to understand the water dynamics of alkaline membrane fuel cells under various operating conditions to create electrodes that enable high performance and stable, long-term operation. Here we show, via operando neutron imaging and operando micro X-ray computed tomography, visualizations of the spatial and temporal distribution of liquid water in operating cells. We provide direct evidence for liquid water accumulation at the anode, which causes severe ionomer swelling and performance loss, as well as cell dryout from undesirably low water content in the cathode. We observe that the operating conditions leading to the highest power density during polarization are not generally the conditions that allow for long-term stable operation. This observation leads to new catalyst layer designs and gas diffusion layers. This study reports alkaline membrane fuel cells that can be operated continuously for over 1000 h at 600 mA cm
−2
with voltage decay rate of only 32-μV h
−1
– the best-reported durability to date.
Modern alkaline membrane fuel cells have generally shown very poor operational stability. Here, the authors combine operando neutron imaging and X-ray computed tomography to understand the root cause for this and then design new electrodes to enable high performance and operational stability. |
---|---|
AbstractList | There is a need to understand the water dynamics of alkaline membrane fuel cells under various operating conditions to create electrodes that enable high performance and stable, long-term operation. Here we show, via operando neutron imaging and operando micro X-ray computed tomography, visualizations of the spatial and temporal distribution of liquid water in operating cells. We provide direct evidence for liquid water accumulation at the anode, which causes severe ionomer swelling and performance loss, as well as cell dryout from undesirably low water content in the cathode. We observe that the operating conditions leading to the highest power density during polarization are not generally the conditions that allow for long-term stable operation. This observation leads to new catalyst layer designs and gas diffusion layers. This study reports alkaline membrane fuel cells that can be operated continuously for over 1000 h at 600 mA cm
−2
with voltage decay rate of only 32-μV h
−1
– the best-reported durability to date.
Modern alkaline membrane fuel cells have generally shown very poor operational stability. Here, the authors combine operando neutron imaging and X-ray computed tomography to understand the root cause for this and then design new electrodes to enable high performance and operational stability. There is a need to understand the water dynamics of alkaline membrane fuel cells under various operating conditions to create electrodes that enable high performance and stable, long-term operation. Here we show, via operando neutron imaging and operando micro X-ray computed tomography, visualizations of the spatial and temporal distribution of liquid water in operating cells. We provide direct evidence for liquid water accumulation at the anode, which causes severe ionomer swelling and performance loss, as well as cell dryout from undesirably low water content in the cathode. We observe that the operating conditions leading to the highest power density during polarization are not generally the conditions that allow for long-term stable operation. This observation leads to new catalyst layer designs and gas diffusion layers. This study reports alkaline membrane fuel cells that can be operated continuously for over 1000 h at 600 mA cm-2 with voltage decay rate of only 32-μV h-1 – the best-reported durability to date. Modern alkaline membrane fuel cells have generally shown very poor operational stability. Here, the authors combine operando neutron imaging and X-ray computed tomography to understand the root cause for this and then design new electrodes to enable high performance and operational stability. There is a need to understand the water dynamics of alkaline membrane fuel cells under various operating conditions to create electrodes that enable high performance and stable, long-term operation. Here we show, via operando neutron imaging and operando micro X-ray computed tomography, visualizations of the spatial and temporal distribution of liquid water in operating cells. We provide direct evidence for liquid water accumulation at the anode, which causes severe ionomer swelling and performance loss, as well as cell dryout from undesirably low water content in the cathode. We observe that the operating conditions leading to the highest power density during polarization are not generally the conditions that allow for long-term stable operation. This observation leads to new catalyst layer designs and gas diffusion layers. This study reports alkaline membrane fuel cells that can be operated continuously for over 1000 h at 600 mA cm−2 with voltage decay rate of only 32-μV h−1 – the best-reported durability to date.Modern alkaline membrane fuel cells have generally shown very poor operational stability. Here, the authors combine operando neutron imaging and X-ray computed tomography to understand the root cause for this and then design new electrodes to enable high performance and operational stability. There is a need to understand the water dynamics of alkaline membrane fuel cells under various operating conditions to create electrodes that enable high performance and stable, long-term operation. Here we show, via operando neutron imaging and operando micro X-ray computed tomography, visualizations of the spatial and temporal distribution of liquid water in operating cells. We provide direct evidence for liquid water accumulation at the anode, which causes severe ionomer swelling and performance loss, as well as cell dryout from undesirably low water content in the cathode. We observe that the operating conditions leading to the highest power density during polarization are not generally the conditions that allow for long-term stable operation. This observation leads to new catalyst layer designs and gas diffusion layers. This study reports alkaline membrane fuel cells that can be operated continuously for over 1000 h at 600 mA cm with voltage decay rate of only 32-μV h - the best-reported durability to date. There is a need to understand the water dynamics of alkaline membrane fuel cells under various operating conditions to create electrodes that enable high performance and stable, long-term operation. Here we show, via operando neutron imaging and operando micro X-ray computed tomography, visualizations of the spatial and temporal distribution of liquid water in operating cells. We provide direct evidence for liquid water accumulation at the anode, which causes severe ionomer swelling and performance loss, as well as cell dryout from undesirably low water content in the cathode. We observe that the operating conditions leading to the highest power density during polarization are not generally the conditions that allow for long-term stable operation. This observation leads to new catalyst layer designs and gas diffusion layers. This study reports alkaline membrane fuel cells that can be operated continuously for over 1000 h at 600 mA cm-2 with voltage decay rate of only 32-μV h-1 - the best-reported durability to date.There is a need to understand the water dynamics of alkaline membrane fuel cells under various operating conditions to create electrodes that enable high performance and stable, long-term operation. Here we show, via operando neutron imaging and operando micro X-ray computed tomography, visualizations of the spatial and temporal distribution of liquid water in operating cells. We provide direct evidence for liquid water accumulation at the anode, which causes severe ionomer swelling and performance loss, as well as cell dryout from undesirably low water content in the cathode. We observe that the operating conditions leading to the highest power density during polarization are not generally the conditions that allow for long-term stable operation. This observation leads to new catalyst layer designs and gas diffusion layers. This study reports alkaline membrane fuel cells that can be operated continuously for over 1000 h at 600 mA cm-2 with voltage decay rate of only 32-μV h-1 - the best-reported durability to date. There is a need to understand the water dynamics of alkaline membrane fuel cells under various operating conditions to create electrodes that enable high performance and stable, long-term operation. Here we show, via operando neutron imaging and operando micro X-ray computed tomography, visualizations of the spatial and temporal distribution of liquid water in operating cells. We provide direct evidence for liquid water accumulation at the anode, which causes severe ionomer swelling and performance loss, as well as cell dryout from undesirably low water content in the cathode. We observe that the operating conditions leading to the highest power density during polarization are not generally the conditions that allow for long-term stable operation. This observation leads to new catalyst layer designs and gas diffusion layers. This study reports alkaline membrane fuel cells that can be operated continuously for over 1000 h at 600 mA cm −2 with voltage decay rate of only 32-μV h −1 – the best-reported durability to date. |
ArticleNumber | 3561 |
Author | Kulkarni, Devashish Omasta, Travis J. Ng, Benjamin LaManna, Jacob M. Mustain, William E. Varcoe, John R. Wang, Lianqin Hussey, Daniel S. Zheng, Yiwei Huang, Ying Zenyuk, Iryna V. Peng, Xiong |
Author_xml | – sequence: 1 givenname: Xiong orcidid: 0000-0001-8737-5830 surname: Peng fullname: Peng, Xiong organization: Department of Chemical Engineering, University of South Carolina – sequence: 2 givenname: Devashish surname: Kulkarni fullname: Kulkarni, Devashish organization: Department of Materials Science and Engineering; National Fuel Cell Research Center, University of California Irvine – sequence: 3 givenname: Ying orcidid: 0000-0002-8356-6194 surname: Huang fullname: Huang, Ying organization: Department of Materials Science and Engineering; National Fuel Cell Research Center, University of California Irvine – sequence: 4 givenname: Travis J. surname: Omasta fullname: Omasta, Travis J. organization: Department of Chemical Engineering, University of South Carolina – sequence: 5 givenname: Benjamin surname: Ng fullname: Ng, Benjamin organization: Department of Chemical Engineering, University of South Carolina – sequence: 6 givenname: Yiwei surname: Zheng fullname: Zheng, Yiwei organization: Department of Chemical Engineering, University of South Carolina – sequence: 7 givenname: Lianqin surname: Wang fullname: Wang, Lianqin organization: Department of Chemistry, University of Surrey – sequence: 8 givenname: Jacob M. orcidid: 0000-0002-7105-022X surname: LaManna fullname: LaManna, Jacob M. organization: National Institute for Standards and Technology – sequence: 9 givenname: Daniel S. surname: Hussey fullname: Hussey, Daniel S. organization: National Institute for Standards and Technology – sequence: 10 givenname: John R. surname: Varcoe fullname: Varcoe, John R. organization: Department of Chemistry, University of Surrey – sequence: 11 givenname: Iryna V. surname: Zenyuk fullname: Zenyuk, Iryna V. organization: Department of Materials Science and Engineering; National Fuel Cell Research Center, University of California Irvine, Department of Chemical and Biomolecular Engineering, University of California Irvine – sequence: 12 givenname: William E. orcidid: 0000-0001-7804-6410 surname: Mustain fullname: Mustain, William E. email: mustainw@mailbox.sc.edu organization: Department of Chemical Engineering, University of South Carolina |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32678101$$D View this record in MEDLINE/PubMed https://www.osti.gov/servlets/purl/1647312$$D View this record in Osti.gov |
BookMark | eNp9UsFu1DAUjFARLaU_wAFFcOkl4Gd7E-eChCoKlSpxoWfLsV-y3ib2YjtI_D3OpoW2h1qy8pw3M55M3uviyHmHRfEWyEcgTHyKHHjdVISSChrWkKp5UZxQwiEfKTt6UB8XZzHuSF6sBcH5q-KY0boRQOCkuL2J1g2l32NQzvgyod46-2vGWCZfzs5giCl3ymUbjHZw5dYO2zITeh8m5TQeehnVjbkcb9VoHZYTTl2WxLKfcSw1jmN8U7zs1Rjx7O55Wtxcfv158b26_vHt6uLLdaVrxlIFQkPTdJqoDWdKU9SoiWgBRYsUDZgOgXQ9tMhI1wKQvjUMNx1RqCnohp0WV6uu8Won98FOKvyRXll5eOHDIFVIVo8oMxmV2BBeG-ScKmU2NWtFTYnQlLc0a31etfZzN6HR6FJQ4yPRxx1nt3Lwv2XD6rxYFni_CviYrIzaLglr7xzqJKHmDYPllvO7W4Jfsk9ysnHJLAfo5ygpz2bauoVNhn54At35Obic5wHFOAWxoN49tP3P7_2PzwCxAnTwMQbsZXamkvXLV9gxByOXMZPrmMk8ZvIwZnKJlz6h3qs_S2IrKWawGzD8t_0M6y8JcuTV |
CitedBy_id | crossref_primary_10_1017_jfm_2024_1131 crossref_primary_10_1021_acscatal_2c01880 crossref_primary_10_1021_acscatal_3c01453 crossref_primary_10_1016_j_coelec_2021_100832 crossref_primary_10_1016_j_memsci_2022_120341 crossref_primary_10_1021_acs_macromol_3c02406 crossref_primary_10_1002_anie_202316697 crossref_primary_10_1149_1945_7111_abe08a crossref_primary_10_1016_j_jpowsour_2023_233687 crossref_primary_10_1016_j_electacta_2021_139812 crossref_primary_10_1039_D4TA02354D crossref_primary_10_3390_jimaging7010001 crossref_primary_10_1016_j_apcatb_2022_121733 crossref_primary_10_1595_205651321X16067419458185 crossref_primary_10_2139_ssrn_3985401 crossref_primary_10_1002_smll_202104934 crossref_primary_10_1002_advs_202101744 crossref_primary_10_1016_j_apcatb_2024_124322 crossref_primary_10_1149_1945_7111_acada3 crossref_primary_10_1002_anie_202114892 crossref_primary_10_1039_D3TA05669D crossref_primary_10_5796_electrochemistry_23_00140 crossref_primary_10_1002_adma_202410106 crossref_primary_10_1002_er_6419 crossref_primary_10_1016_j_memsci_2022_120299 crossref_primary_10_1016_j_electacta_2024_145538 crossref_primary_10_1002_anie_202013395 crossref_primary_10_1039_D0EE01133A crossref_primary_10_1039_D1NJ03818D crossref_primary_10_1016_j_memsci_2025_123743 crossref_primary_10_1002_aenm_202401725 crossref_primary_10_1016_j_jpowsour_2021_230184 crossref_primary_10_1016_j_jpowsour_2022_232343 crossref_primary_10_1021_acs_energyfuels_4c05199 crossref_primary_10_1038_s41560_021_00969_5 crossref_primary_10_1021_acscatal_0c03511 crossref_primary_10_1039_D2EE03120E crossref_primary_10_1149_1945_7111_ad0a7e crossref_primary_10_1016_j_ijhydene_2022_03_007 crossref_primary_10_1016_j_jpowsour_2021_230868 crossref_primary_10_1002_marc_202400336 crossref_primary_10_1016_j_energy_2024_130557 crossref_primary_10_1016_j_memsci_2024_122424 crossref_primary_10_1039_D4CC05928J crossref_primary_10_1016_j_arabjc_2022_104451 crossref_primary_10_2139_ssrn_4005784 crossref_primary_10_1002_ange_202105231 crossref_primary_10_1039_D1NR06285A crossref_primary_10_1016_j_electacta_2021_139439 crossref_primary_10_1016_j_cej_2021_131969 crossref_primary_10_1016_j_trechm_2021_12_009 crossref_primary_10_1002_adfm_202307041 crossref_primary_10_1002_aenm_202204304 crossref_primary_10_1021_acscentsci_3c01490 crossref_primary_10_1016_j_memsci_2022_120676 crossref_primary_10_1016_j_ijhydene_2022_12_163 crossref_primary_10_1016_j_cej_2021_129480 crossref_primary_10_1002_smll_202105499 crossref_primary_10_1016_j_jpowsour_2023_233353 crossref_primary_10_1016_j_jpowsour_2021_230287 crossref_primary_10_1039_D1TA10178A crossref_primary_10_1016_j_apcatb_2023_122375 crossref_primary_10_1021_acs_chemrev_2c00873 crossref_primary_10_1039_D1EE02642A crossref_primary_10_1016_j_jpowsour_2022_231835 crossref_primary_10_1021_acsapm_2c00415 crossref_primary_10_1039_D0SE01373K crossref_primary_10_1016_j_checat_2023_100769 crossref_primary_10_1016_j_jechem_2025_01_076 crossref_primary_10_1002_ange_202114892 crossref_primary_10_1002_advs_202403631 crossref_primary_10_1002_celc_202200999 crossref_primary_10_1002_anie_202105231 crossref_primary_10_1016_j_memsci_2022_120303 crossref_primary_10_1002_ange_202013395 crossref_primary_10_1016_j_ijhydene_2022_06_041 crossref_primary_10_1016_j_memsci_2023_122057 crossref_primary_10_1039_D0RA06484J crossref_primary_10_1016_j_memsci_2021_119685 crossref_primary_10_1002_advs_202102637 crossref_primary_10_1016_j_memsci_2021_119966 crossref_primary_10_1016_j_fuel_2023_128180 crossref_primary_10_1021_jacs_2c01094 crossref_primary_10_1002_aenm_202001986 crossref_primary_10_3390_membranes11020102 crossref_primary_10_1002_smll_202400031 crossref_primary_10_1088_2515_7655_abb783 crossref_primary_10_1021_acselectrochem_4c00157 crossref_primary_10_1016_j_memsci_2021_120160 crossref_primary_10_1016_j_apcatb_2021_120335 crossref_primary_10_2139_ssrn_4105375 crossref_primary_10_1016_j_joule_2024_02_011 crossref_primary_10_1016_j_memsci_2021_119335 crossref_primary_10_1016_j_mtsust_2021_100060 crossref_primary_10_1016_j_jpowsour_2023_232967 crossref_primary_10_1093_nsr_nwae315 crossref_primary_10_1134_S0020168523070117 crossref_primary_10_1016_j_jpowsour_2020_229407 crossref_primary_10_1007_s12274_024_6584_7 crossref_primary_10_1038_s41467_021_25911_x crossref_primary_10_1016_j_electacta_2023_142810 crossref_primary_10_1038_s41560_021_00878_7 crossref_primary_10_1038_s41570_021_00255_8 crossref_primary_10_1016_j_electacta_2024_144996 crossref_primary_10_1126_sciadv_adg8634 crossref_primary_10_1021_acsnano_4c04943 crossref_primary_10_1016_j_reactfunctpolym_2025_106149 crossref_primary_10_1115_1_4056029 crossref_primary_10_1016_j_energy_2022_126322 crossref_primary_10_1016_j_jpowsour_2021_230474 crossref_primary_10_31857_S0002337X23070114 crossref_primary_10_1039_D3EE01768K crossref_primary_10_1149_1945_7111_ac4b81 crossref_primary_10_1039_D3TA07065D crossref_primary_10_1038_s41467_021_22612_3 crossref_primary_10_1039_D1EE01170G crossref_primary_10_1016_j_ijheatmasstransfer_2024_125932 crossref_primary_10_1038_s41929_024_01279_1 crossref_primary_10_1002_aenm_202200708 crossref_primary_10_1021_acs_chemrev_1c00331 crossref_primary_10_1002_ange_202316697 crossref_primary_10_1016_j_memsci_2023_121900 crossref_primary_10_1039_D2CS00038E crossref_primary_10_1007_s12274_023_5792_x crossref_primary_10_1016_j_jpowsour_2022_231599 crossref_primary_10_1021_acscatal_0c03973 crossref_primary_10_1016_j_jpowsour_2022_231514 crossref_primary_10_1016_j_jiec_2022_07_045 crossref_primary_10_1016_j_colsurfa_2022_129270 crossref_primary_10_1016_j_jpowsour_2022_232608 crossref_primary_10_1002_adma_202006292 crossref_primary_10_1039_D1TA05166K |
Cites_doi | 10.1016/j.jpowsour.2017.07.117 10.1149/2.0361907jes 10.1021/jp7115577 10.1107/S160057751401604X 10.1063/1.4767118 10.1039/C4EE01303D 10.1016/j.coelec.2018.11.010 10.1016/j.electacta.2018.04.144 10.1016/j.jpowsour.2005.09.062 10.1016/j.jpowsour.2017.05.006 10.1021/acs.chemmater.7b00958 10.1039/C8EE00122G 10.1149/2.1301910jes 10.1016/j.jpowsour.2005.09.013 10.1021/jp9122198 10.1038/nmeth.2089 10.1016/j.apcatb.2017.08.067 10.1039/C6GC02526A 10.1016/j.jpowsour.2018.04.047 10.1016/j.electacta.2017.10.012 10.1016/j.nima.2017.05.035 10.1016/j.mtener.2018.05.011 10.1149/1.3635565 10.1038/s41560-019-0372-8 10.1107/S1600577516005658 10.1039/C7EE02053H 10.1039/C9EE00331B 10.1149/2.0171907jes 10.1039/C4TA00558A 10.1149/2.0022005JES 10.1149/MA2018-01/30/1755 |
ContentType | Journal Article |
Copyright | The Author(s) 2020 The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2020 – notice: The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
CorporateAuthor | Pennsylvania State Univ., University Park, PA (United States) |
CorporateAuthor_xml | – name: Pennsylvania State Univ., University Park, PA (United States) |
DBID | C6C AAYXX CITATION NPM 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7X8 OIOZB OTOTI 5PM DOA |
DOI | 10.1038/s41467-020-17370-7 |
DatabaseName | SpringerOpen CrossRef PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni) Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts MEDLINE - Academic OSTI.GOV - Hybrid OSTI.GOV PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database PubMed MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1723 |
EndPage | 10 |
ExternalDocumentID | oai_doaj_org_article_10fea85046de442aad563986208c2492 PMC7366663 1647312 32678101 10_1038_s41467_020_17370_7 |
Genre | Journal Article |
GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LK8 M1P M48 M7P M~E NAO O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX CITATION PHGZM PHGZT NPM 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AARCD AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS RC3 SOI 7X8 AAPBV AAYJO ADQMX AEDAW OIOZB OTOTI ZA5 5PM PUEGO |
ID | FETCH-LOGICAL-c633t-18c177bc0a543ac2ecec0891e89e2ed1dbe10bf19e30b9110f9d3e5b0aec21c73 |
IEDL.DBID | M48 |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 01:30:54 EDT 2025 Thu Aug 21 18:30:38 EDT 2025 Thu May 18 22:40:11 EDT 2023 Fri Jul 11 05:27:05 EDT 2025 Wed Aug 13 11:11:57 EDT 2025 Wed Feb 19 02:01:46 EST 2025 Tue Jul 01 04:09:00 EDT 2025 Thu Apr 24 23:01:37 EDT 2025 Fri Feb 21 02:40:01 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c633t-18c177bc0a543ac2ecec0891e89e2ed1dbe10bf19e30b9110f9d3e5b0aec21c73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 USDOE Office of Energy Efficiency and Renewable Energy (EERE), Transportation Office. Fuel Cell Technologies Office EE0008433; AC02-05CH11231 |
ORCID | 0000-0001-7804-6410 0000-0002-8356-6194 0000-0001-8737-5830 0000-0002-7105-022X 0000000283566194 0000000178046410 000000027105022X 0000000187375830 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-020-17370-7 |
PMID | 32678101 |
PQID | 2424342185 |
PQPubID | 546298 |
PageCount | 10 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_10fea85046de442aad563986208c2492 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7366663 osti_scitechconnect_1647312 proquest_miscellaneous_2424996915 proquest_journals_2424342185 pubmed_primary_32678101 crossref_citationtrail_10_1038_s41467_020_17370_7 crossref_primary_10_1038_s41467_020_17370_7 springer_journals_10_1038_s41467_020_17370_7 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-07-16 |
PublicationDateYYYYMMDD | 2020-07-16 |
PublicationDate_xml | – month: 07 year: 2020 text: 2020-07-16 day: 16 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England – name: United States |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationTitleAlternate | Nat Commun |
PublicationYear | 2020 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Omasta (CR6) 2018; 375 Hussey, Lamanna, Baltic, Jacobson (CR36) 2017; 866 Varcoe (CR2) 2014; 7 Leonard (CR27) 2018; 276 CR16 CR10 Wang (CR8) 2019; 166 Mustain (CR23) 2018; 12 Schneider, Rasband, Eliceiri (CR33) 2012; 9 Mandal (CR4) 2020; 167 Omasta (CR7) 2018; 11 Cleghorn (CR14) 2006; 158 Hussey (CR37) 2012; 112 Yan, Toghiani, Wu (CR17) 2006; 158 Wang, Peng, Mustain, Varcoe (CR5) 2019; 12 Wang (CR12) 2019; 4 Wang (CR20) 2017; 10 Dekel (CR1) 2018; 375 Prestona, Pasaogullaria, Husseyb (CR35) 2011; 41 Palenstijn, Sijbers (CR30) 2016; 23 Huang (CR3) 2019; 166 Vogt, Gleber, Narayanan, Newville (CR29) 2014; 21 Chempath, Boncella, Pratt, Henson, Pivovar (CR24) 2010; 114 Jacobson, Arif, Vecchia (CR34) 2010; 7 CR9 Wang (CR19) 2017; 19 Chempath (CR25) 2008; 112 CR26 Shum (CR32) 2017; 256 Poynton (CR22) 2014; 2 Zhu (CR11) 2019; 1902059 Dekel (CR15) 2017; 29 CR21 Normile (CR28) 2018; 9 Serov, Shum, Xiao, De Andrade, Artyushkova (CR38) 2018; 237 Peng (CR13) 2018; 390 Gerhardt, Weber (CR18) 2019; 166 De Carlo, Xiao, Jacobsen (CR31) 2014; 21 DS Hussey (17370_CR37) 2012; 112 TJ Omasta (17370_CR6) 2018; 375 SJC Cleghorn (17370_CR14) 2006; 158 L Wang (17370_CR20) 2017; 10 S Chempath (17370_CR24) 2010; 114 H Peng (17370_CR13) 2018; 390 S Vogt (17370_CR29) 2014; 21 G Huang (17370_CR3) 2019; 166 L Wang (17370_CR19) 2017; 19 17370_CR9 17370_CR16 SJ Normile (17370_CR28) 2018; 9 F De Carlo (17370_CR31) 2014; 21 A Serov (17370_CR38) 2018; 237 DLJJS Prestona (17370_CR35) 2011; 41 DS Hussey (17370_CR36) 2017; 866 E Leonard (17370_CR27) 2018; 276 17370_CR10 MR Gerhardt (17370_CR18) 2019; 166 CA Schneider (17370_CR33) 2012; 9 M Mandal (17370_CR4) 2020; 167 L Wang (17370_CR5) 2019; 12 J Wang (17370_CR12) 2019; 4 L Zhu (17370_CR11) 2019; 1902059 T Wang (17370_CR8) 2019; 166 TJ Omasta (17370_CR7) 2018; 11 Q Yan (17370_CR17) 2006; 158 WJ Palenstijn (17370_CR30) 2016; 23 DR Dekel (17370_CR15) 2017; 29 S Chempath (17370_CR25) 2008; 112 17370_CR26 DL Jacobson (17370_CR34) 2010; 7 AD Shum (17370_CR32) 2017; 256 DR Dekel (17370_CR1) 2018; 375 SD Poynton (17370_CR22) 2014; 2 WE Mustain (17370_CR23) 2018; 12 JR Varcoe (17370_CR2) 2014; 7 17370_CR21 |
References_xml | – volume: 375 start-page: 158 year: 2018 end-page: 169 ident: CR1 article-title: Review of cell performance in anion exchange membrane fuel cells publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2017.07.117 – volume: 166 start-page: 3305 year: 2019 end-page: 3310 ident: CR8 article-title: High-performance hydroxide exchange membrane fuel cells through optimization of relative humidity, backpressure and catalyst selection publication-title: J. Electrochem. Soc. doi: 10.1149/2.0361907jes – volume: 112 start-page: 3179 year: 2008 end-page: 3182 ident: CR25 article-title: Mechanism of tetraalkylammonium headgroup degradation in alkaline fuel cell membranes publication-title: J. Phys. Chem. C. doi: 10.1021/jp7115577 – volume: 21 start-page: 1188 year: 2014 end-page: 1193 ident: CR31 article-title: TomoPy: a framework for the analysis of synchrotron tomographic data research papers publication-title: J. Synchrotron Radiat. doi: 10.1107/S160057751401604X – volume: 112 start-page: 104906 year: 2012 ident: CR37 article-title: Accurate measurement of the through-plane water content of proton-exchange membranes using neutron radiography publication-title: J. Appl. Phys doi: 10.1063/1.4767118 – volume: 7 start-page: 3135 year: 2014 end-page: 3191 ident: CR2 article-title: Anion-exchange membranes in electrochemical energy systems publication-title: Energy Environ. Sci. doi: 10.1039/C4EE01303D – volume: 21 start-page: 1224 year: 2014 end-page: 1230 ident: CR29 article-title: Scientific Data Exchange: a schema for HDF5-based storage of raw and analyzed data publication-title: J. Synchrotron Radiat. doi: 10.1107/S160057751401604X – ident: CR16 – volume: 12 start-page: 233 year: 2018 end-page: 239 ident: CR23 article-title: Understanding how high-performance anion exchange membrane fuel cells were achieved: component, interfacial, and cell-level factors publication-title: Curr. Opin. Electrochem. doi: 10.1016/j.coelec.2018.11.010 – volume: 276 start-page: 424 year: 2018 end-page: 433 ident: CR27 article-title: Operando X-ray tomography and sub-second radiography for characterizing transport in polymer electrolyte membrane electrolyzer publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2018.04.144 – volume: 158 start-page: 446 year: 2006 end-page: 454 ident: CR14 article-title: A polymer electrolyte fuel cell life test: 3 years of continuous operation publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2005.09.062 – volume: 375 start-page: 205 year: 2018 end-page: 213 ident: CR6 article-title: Importance of balancing membrane and electrode water in anion exchange membrane fuel cells publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2017.05.006 – ident: CR10 – volume: 29 start-page: 4425 year: 2017 end-page: 4431 ident: CR15 article-title: Effect of water on the stability of quaternary ammonium groups for anion exchange membrane fuel cell applications publication-title: Chem. Mater doi: 10.1021/acs.chemmater.7b00958 – volume: 11 start-page: 551 year: 2018 end-page: 558 ident: CR7 article-title: Beyond catalysis and membranes: visualizing and solving the challenge of electrode water accumulation and flooding in AEMFCs publication-title: Energy Environ. Sci. doi: 10.1039/C8EE00122G – volume: 166 start-page: 637 year: 2019 end-page: 644 ident: CR3 article-title: Composite Poly (norbornene) Anion conducting membranes for achieving durability, water management and high power (3.4 W/cm2) in Hydrogen/Oxygen alkaline fuel cells publication-title: J. Electrochem. Soc. doi: 10.1149/2.1301910jes – volume: 158 start-page: 316 year: 2006 end-page: 325 ident: CR17 article-title: Investigation of water transport through membrane in a PEM fuel cell by water balance experiments publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2005.09.013 – ident: CR21 – volume: 114 start-page: 11977 year: 2010 end-page: 11983 ident: CR24 article-title: Density functional theory study of degradation of tetraalkylammonium hydroxides publication-title: J. Phys. Chem. C. doi: 10.1021/jp9122198 – volume: 9 start-page: 671 year: 2012 end-page: 675 ident: CR33 article-title: NIH Image to ImageJ: 25 years of Image Analysis publication-title: Nat. Methods doi: 10.1038/nmeth.2089 – volume: 237 start-page: 1139 year: 2018 end-page: 1147 ident: CR38 article-title: Nano-structured platinum group metal-free catalysts and their integration in fuel cell electrode architectures publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2017.08.067 – volume: 19 start-page: 831 year: 2017 end-page: 843 ident: CR19 article-title: An optimised synthesis of high performance radiation-grafted anion-exchange membranes publication-title: Green. Chem. doi: 10.1039/C6GC02526A – volume: 390 start-page: 165 year: 2018 end-page: 167 ident: CR13 article-title: Alkaline polymer electrolyte fuel cells stably working at 80 °C publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2018.04.047 – volume: 256 start-page: 279 year: 2017 end-page: 290 ident: CR32 article-title: Investigating phase-change-induced flow in gas diffusion layers in fuel cells with X-ray computed tomography publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2017.10.012 – volume: 1902059 start-page: 1 year: 2019 end-page: 8 ident: CR11 article-title: High performance anion exchange membrane fuel cells enabled by Fluoropoly (olefin) membranes publication-title: Adv. Funct. Mater. – volume: 866 start-page: 9 year: 2017 end-page: 12 ident: CR36 article-title: Neutron imaging detector with 2 µ m spatial resolution based on event reconstruction of neutron capture in gadolinium oxysulfide scintillators publication-title: Nucl. Inst. Methods Phys. Res. A. doi: 10.1016/j.nima.2017.05.035 – volume: 9 start-page: 187 year: 2018 end-page: 197 ident: CR28 article-title: Direct observations of liquid water formation at nano- and micro-scale in platinum group metal-free electrodes by operando X-ray computed tomography, Mater publication-title: Today Energy doi: 10.1016/j.mtener.2018.05.011 – volume: 41 start-page: 319 year: 2011 end-page: 328 ident: CR35 article-title: High resolution neutron radiography imaging of microporous layers in PEFCs publication-title: ECS Trans. doi: 10.1149/1.3635565 – volume: 4 start-page: 392 year: 2019 end-page: 398 ident: CR12 article-title: Poly(aryl piperidinium) membranes and ionomers for hydroxide exchange membrane fuel cells Junhua publication-title: Nat. Energy doi: 10.1038/s41560-019-0372-8 – ident: CR9 – volume: 23 start-page: 842 year: 2016 end-page: 849 ident: CR30 article-title: Integration of TomoPy and the ASTRA toolbox for advanced processing and reconstruction of tomographic synchrotron data. publication-title: J Synchrotron Radiat doi: 10.1107/S1600577516005658 – volume: 10 start-page: 2154 year: 2017 end-page: 2167 ident: CR20 article-title: Non-fluorinated pre-irradiation-grafted (peroxidated) LDPE-based anion-exchange membranes with high performance and stability publication-title: Energy Environ. Sci. doi: 10.1039/C7EE02053H – volume: 12 start-page: 1575 year: 2019 end-page: 1579 ident: CR5 article-title: Radiation-grafted anion-exchange membranes: the switch from low- to high-density polyethylene leads to remarkably enhanced fuel cell performance publication-title: Energy Environ. Sci. doi: 10.1039/C9EE00331B – volume: 166 start-page: 3180 year: 2019 end-page: 3192 ident: CR18 article-title: Along-the-channel impacts of water management and carbon-dioxide contamination in hydroxide-exchange-membrane fuel cells: a modeling study publication-title: J. Electrochem. Soc. doi: 10.1149/2.0171907jes – ident: CR26 – volume: 7 start-page: 1 year: 2010 end-page: 6 ident: CR34 article-title: In situ fuel cell water metrology at the NIST neutron imaging facility publication-title: J. Fuel Cell Sci. Technol. – volume: 2 start-page: 5124 year: 2014 end-page: 5130 ident: CR22 article-title: Preparation of radiation-grafted powders for use as anion exchange ionomers in alkaline polymer electrolyte fuel cells publication-title: J. Mater. Chem. A. doi: 10.1039/C4TA00558A – volume: 167 start-page: 54501 year: 2020 ident: CR4 article-title: The importance of water transport in high conductivity and high-power alkaline fuel cells publication-title: J. Electrochem. Soc doi: 10.1149/2.0022005JES – volume: 9 start-page: 187 year: 2018 ident: 17370_CR28 publication-title: Today Energy doi: 10.1016/j.mtener.2018.05.011 – volume: 158 start-page: 316 year: 2006 ident: 17370_CR17 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2005.09.013 – volume: 390 start-page: 165 year: 2018 ident: 17370_CR13 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2018.04.047 – volume: 21 start-page: 1224 year: 2014 ident: 17370_CR29 publication-title: J. Synchrotron Radiat. doi: 10.1107/S160057751401604X – volume: 866 start-page: 9 year: 2017 ident: 17370_CR36 publication-title: Nucl. Inst. Methods Phys. Res. A. doi: 10.1016/j.nima.2017.05.035 – volume: 12 start-page: 1575 year: 2019 ident: 17370_CR5 publication-title: Energy Environ. Sci. doi: 10.1039/C9EE00331B – ident: 17370_CR10 – volume: 1902059 start-page: 1 year: 2019 ident: 17370_CR11 publication-title: Adv. Funct. Mater. – volume: 158 start-page: 446 year: 2006 ident: 17370_CR14 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2005.09.062 – volume: 21 start-page: 1188 year: 2014 ident: 17370_CR31 publication-title: J. Synchrotron Radiat. doi: 10.1107/S160057751401604X – volume: 9 start-page: 671 year: 2012 ident: 17370_CR33 publication-title: Nat. Methods doi: 10.1038/nmeth.2089 – volume: 7 start-page: 3135 year: 2014 ident: 17370_CR2 publication-title: Energy Environ. Sci. doi: 10.1039/C4EE01303D – volume: 23 start-page: 842 year: 2016 ident: 17370_CR30 publication-title: J Synchrotron Radiat doi: 10.1107/S1600577516005658 – volume: 375 start-page: 158 year: 2018 ident: 17370_CR1 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2017.07.117 – ident: 17370_CR9 – volume: 114 start-page: 11977 year: 2010 ident: 17370_CR24 publication-title: J. Phys. Chem. C. doi: 10.1021/jp9122198 – volume: 4 start-page: 392 year: 2019 ident: 17370_CR12 publication-title: Nat. Energy doi: 10.1038/s41560-019-0372-8 – ident: 17370_CR26 – volume: 256 start-page: 279 year: 2017 ident: 17370_CR32 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2017.10.012 – volume: 19 start-page: 831 year: 2017 ident: 17370_CR19 publication-title: Green. Chem. doi: 10.1039/C6GC02526A – volume: 41 start-page: 319 year: 2011 ident: 17370_CR35 publication-title: ECS Trans. doi: 10.1149/1.3635565 – volume: 166 start-page: 3305 year: 2019 ident: 17370_CR8 publication-title: J. Electrochem. Soc. doi: 10.1149/2.0361907jes – volume: 166 start-page: 3180 year: 2019 ident: 17370_CR18 publication-title: J. Electrochem. Soc. doi: 10.1149/2.0171907jes – volume: 112 start-page: 104906 year: 2012 ident: 17370_CR37 publication-title: J. Appl. Phys doi: 10.1063/1.4767118 – ident: 17370_CR16 doi: 10.1149/MA2018-01/30/1755 – volume: 112 start-page: 3179 year: 2008 ident: 17370_CR25 publication-title: J. Phys. Chem. C. doi: 10.1021/jp7115577 – volume: 2 start-page: 5124 year: 2014 ident: 17370_CR22 publication-title: J. Mater. Chem. A. doi: 10.1039/C4TA00558A – volume: 167 start-page: 54501 year: 2020 ident: 17370_CR4 publication-title: J. Electrochem. Soc doi: 10.1149/2.0022005JES – volume: 29 start-page: 4425 year: 2017 ident: 17370_CR15 publication-title: Chem. Mater doi: 10.1021/acs.chemmater.7b00958 – volume: 375 start-page: 205 year: 2018 ident: 17370_CR6 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2017.05.006 – volume: 12 start-page: 233 year: 2018 ident: 17370_CR23 publication-title: Curr. Opin. Electrochem. doi: 10.1016/j.coelec.2018.11.010 – volume: 276 start-page: 424 year: 2018 ident: 17370_CR27 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2018.04.144 – volume: 11 start-page: 551 year: 2018 ident: 17370_CR7 publication-title: Energy Environ. Sci. doi: 10.1039/C8EE00122G – ident: 17370_CR21 – volume: 10 start-page: 2154 year: 2017 ident: 17370_CR20 publication-title: Energy Environ. Sci. doi: 10.1039/C7EE02053H – volume: 237 start-page: 1139 year: 2018 ident: 17370_CR38 publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2017.08.067 – volume: 166 start-page: 637 year: 2019 ident: 17370_CR3 publication-title: J. Electrochem. Soc. doi: 10.1149/2.1301910jes – volume: 7 start-page: 1 year: 2010 ident: 17370_CR34 publication-title: J. Fuel Cell Sci. Technol. |
SSID | ssj0000391844 |
Score | 2.6295888 |
Snippet | There is a need to understand the water dynamics of alkaline membrane fuel cells under various operating conditions to create electrodes that enable high... Modern alkaline membrane fuel cells have generally shown very poor operational stability. Here, the authors combine operando neutron imaging and X-ray computed... |
SourceID | doaj pubmedcentral osti proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3561 |
SubjectTerms | 639/4077/893 639/638/161/893 Catalysts Computed tomography Decay rate Diffusion layers Electrode polarization Electrodes ENERGY STORAGE Fuel cells Fuel technology Gaseous diffusion Humanities and Social Sciences Ionomers Membranes Moisture content multidisciplinary Science Science (multidisciplinary) Stability Temporal distribution Water Water content X ray imagery |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQJSQuiPIMLchI3CDCjp85FkRVIcGJSr1ZsT0RqNvNit098O-ZcbJpl-eFw2qj9azkzMPzTTL-zNhLo6D3KecaoaqodQe27oyytdGRGM2ciGW72MdP9uxcf7gwFzeO-qKesJEeeFQcRnUPnTdYxmXQuum6bDCpIg4XPhHbHa2-mPNuFFNlDVYtli562iUjlH-z1mVNoGpJOoXzcnuZqBD249eAgfU7sPlrz-RPL05LPjq9x-5OQJKfjDdwyG7B8j67PR4t-f0Buyy9AHxYASajPPCZq3XNNwPfzltaOH1yaePgRF3MV9c7CcoYSsUFXi4uO0Kk_AqusMDGi34LC07P_dcP2fnp-8_vzurpYIU6WaU2tfRJOheT6IxWXWogQRK-leBbaCDLHEGK2MsWlIi4Goq-zQpMFB2kRianHrGD5bCEJ4yDtKZF6Gt7j1hMZB8tuLbLVudGYYasmNwpOaSJdZwOv1iE8vZb-TAaJqBhQjFMcBV7Nf9nNXJu_FX6LdluliS-7PIDelGYvCj8y4sqdkSWDwg7yB6JmozSJhDZmpI4erxziDCF-DrQvhqlESGZir2YhzE4SfNohmE7ymBB2UqUeTz6zzxPxM2O2NUq5vY8a-9G9keWX78UAnCnsOi0qmKvdz54Pa0_K-rp_1DUEbvTUAwRtag9Zgebb1t4hrBsE5-XCPwBsh4www priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9QwDI9gCIkXxPfKBgoSb1AtadIkfUKAOCYkeGLS3qI2cQHtdj3W3gP_PXba6-n42EPVqkmlNLZjO7F_ZuxlqaB1IcYcTVWR6xpMXpfK5KVuCNHMiiali33-Yk7P9Kfz8nzacOunsMrtmpgW6tgF2iM_oTQGpVEhlW_WP3OqGkWnq1MJjZvslkRNQyFdbvFx3mMh9HOn9ZQrI5Q76XVaGchnklbh6OyePkqw_XjrULz-ZXL-HTn5x_Fp0kqLe-zuZE7ytyP977MbsHrAbo8FJn89ZBcpIoB3a0CVFDs-I7b2fOj4Zk5s4XTFFMzBCcCYr3f5BKkNezVLfFxe1GSX8ku4RDcbH9oNLDnt_veP2Nniw9f3p_lUXiEPRqkhly5Ia5sg6lKrOhQQIAhXSXAVFBBlbECKppUVKNHgmijaKiooG1FDKGSw6jE7WHUrOGQcpCkrNIBN69AiE9E1BmxVR6NjoVBPZkxuJ9mHCXucSmAsfToDV86PhPFIGJ8I423GXs3frEfkjWt7vyPazT0JNTu96K6--UkI8dsWalcKbSJoXdR1LNFAQ59OuEDIiRk7Isp7ND6IHoFCjcLgCXJNSWw93jKEnwS99zu2zNiLuRlFlGYeydBtxj7oVlYS-zwZ-WceJ1rPljDWMmb3OGvvR_ZbVj--Jxhwq9D1NCpjr7c8uBvW_yfq6fV_ccTuFCQdBB1qjtnBcLWBZ2h2Dc3zJFu_AbeBKUE priority: 102 providerName: ProQuest – databaseName: Springer Nature HAS Fully OA dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZKKyQuiHfTFmQkbhBhx47tHBdEVa0EF6jUm5XYE0Ddblbd3QP_vjPOo1ooSByiROtx5PXMxN8kM58Ze1MqaF2IMUeoKnJdg8nrUpm81A0xmlnRpHKxz1_M2bmeX5QXe6wYa2FS0n6itEyP6TE77P1aJ5emYEdahbe199gBUbWjbR_MZvOv8-nNCnGeO62HChmh3B2dd1ahRNaPpw6d6i6g-We-5G8fTdNadPqIPRxAJJ_1w37M9mD5hN3vt5X89ZRdpjwA3q0AF6LY8Ymndc03Hd9O5SycjphSODjRFvPVbRVBakOpZoGXi8ua0Ci_gisMrvGi3cKC0zv_9TN2fvrp28ezfNhUIQ9GqU0uXZDWNkHUpVZ1KCBAEK6S4CooIMrYgBRNKytQosEnoWirqKBsRA2hkMGq52x_2S3hkHGQpqwQ9prWIQ4T0TUGbFVHo2OhcHXMmBwn2YeBcZw2vlj49OVbOd8rxqNifFKMtxl7O_VZ9Xwb_5T-QLqbJIkrO_3QXX_3g-1g3xZqVwptImhd1HUsEZZhJCdcIL7EjB2T5j1CDtJHoASjsPFEtKYktp6MBuEH9157qqlRGtFRmbHXUzM6Js08qqHb9jIYTFYSZV709jONEzGzJWa1jNkdy9r5I7sty58_Evm3VRhwGpWxd6MN3g7r7xN19H_ix-xBQd5CBKLmhO1vrrfwEsHXpnk1eNsNr9UocA priority: 102 providerName: Springer Nature |
Title | Using operando techniques to understand and design high performance and stable alkaline membrane fuel cells |
URI | https://link.springer.com/article/10.1038/s41467-020-17370-7 https://www.ncbi.nlm.nih.gov/pubmed/32678101 https://www.proquest.com/docview/2424342185 https://www.proquest.com/docview/2424996915 https://www.osti.gov/servlets/purl/1647312 https://pubmed.ncbi.nlm.nih.gov/PMC7366663 https://doaj.org/article/10fea85046de442aad563986208c2492 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bb9MwFLZ2EWgviDthozISbxCwY8d2HhDqqpWp0iYEVOqbldjOQMua0YvE_j3HzmUqdDzkothWHZ9z4u_UPt9B6E3KXKmMtTFAVRLz3Ik4T5mIU154RjNJihAudnYuTqd8MktnO6hLd9QO4HKra-fzSU0X1fvfv24-gcF_bELG1YclD-buHSEqGfyk3EX7MDNJn9HgrIX74cvMMnBoeBs7s73pAboPiEZ63quNqSow-sOlBsvbhkb_3VT518pqmLDGD9GDFmniYaMaj9COmz9G95rckzdP0GXYLIDhbWG2sjXuyVyXeFXjdR_zgv1hwz4P7LmN8fVtqEEog1pFBbfVZe4hK75yV-CBw025dhX2CwPLp2g6Pvk-Oo3bzAuxEYytYqoMlbIwJE85y03ijDNEZdSpzCXOUls4SoqSZo6RAj6XpMwsc2lBcmcSaiR7hvbm9dy9QNhRkWaAjUWpAKwRqwrhZJZbwW3CYAqNEO0GWZuWltxnx6h0WB5nSjcy0iAjHWSkZYTe9m2uG1KO_9Y-9rLra3pC7fCgXlzo1j6hbelylRIurOM8yXObAnYDd48o40kVI3ToJa8Bl3h5GL8Lyay0Z2NjFEqPOoXQnQprH3jDOECoNEKv-2KwXj_yIIZ63dQBjzOjUOd5oz99Pzs1jJDc0KyNF9ksmf_8ERjCJQOvVLAIvet08LZbdw_Uyzu7cIgOEm8jnlBUHKG91WLtXgEYWxUDtCtnEs5q_HmA9ofDybcJXI9Pzr98hacjMRqEvzkGwRL_AB-kMwo |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFLZKEYILYie0gJHgBFHt2LGdA0JsZUqXUyv1ZhLbAdTpZOjMCPVP8Rt5z1lGw9JbD1GisTNK_Pb4ve8R8jwXoTbO-xRcVZbKMqi0zIVKc1khoplmVSwX2z9QoyP5-Tg_XiO_-loYTKvsdWJU1L5x-I18C8sYhASDlL-Z_kixaxTurvYtNFq22A3nPyFkm73e-QD0fZFl2x8P34_SrqtA6pQQ85Qbx7WuHCtzKUqXBRccMwUPpghZ8NxXgbOq5kUQrAJVwOrCi5BXrAwu404L-N8r5KoUYMmxMn370_BNB9HWjZRdbQ4TZmsmoybCGI1rAauhV-xfbBMApwbE-V8u7t-Zmn9s10YruH2L3OzcV_q25bfbZC1M7pBrbUPL87vkJGYg0GYawAT6hg4IsTM6b-hiKKShePiYPEIRMJlOl_ULcQxmVWO4HJ-U6AfT03AKYT1c1IswprjbMLtHji5l4e-T9UkzCQ8JDVzlBTjcqjbgATJvKhV0UXolfSbALieE94tsXYd1ji03xjbuuQtjW8JYIIyNhLE6IS-He6Yt0seFs98h7YaZiNIdf2jOvtpO6OHeOpQmZ1L5IGVWlj4HhxBiSGYcIjUmZAMpb8HZQXo4TG1yc4sQb4LD6GbPELZTLDO7FIOEPBuGQSXgygMZmkU7B8LYgsOcBy3_DM8J3rpGTLeE6BXOWnmR1ZHJ928RdlwLCHWVSMirngeXj_X_hXp08Vs8JddHh_t7dm_nYHeD3MhQUhC2VG2S9fnZIjwGl29ePYlyRsmXyxbs39FwZ5E |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZGJxAviDthA4wETxDVjp3YeUCIsVUbg2lCTNqbl9gOoHVNWVuh_TV-Hec4l6pc9raHKFHtVInPPT7nO4S8SIWvtHUuBleVxbLwWVykIotTWSKimWJlKBf7dJDtHskPx-nxGvnV1cJgWmWnE4OidrXFb-RDLGMQEgxSOqzatIjD7dHb6Y8YO0jhTmvXTqNhkX1_8RPCt9mbvW2g9cskGe18eb8btx0GYpsJMY-5tlyp0rIilaKwibfeMp1zr3OfeMdd6TkrK557wUpQC6zKnfBpyQpvE26VgP-9RtYVRkUDsr61c3D4uf_Cg9jrWsq2UocJPZzJoJcwYuNKwNqoFWsYmgbAqQbh_pfD-3fe5h-bt8Emjm6TW60zS9813HeHrPnJXXK9aW95cY-chnwEWk89GERX0x4vdkbnNV30ZTUUDxdSSSjCJ9PpspohjMGscgyX49MCvWJ65s8gyIeLauHHFPceZvfJ0ZUs_QMymNQT_4hQz7M0B_c7qzT4g8zpMvMqL1wmXSLASkeEd4tsbIt8jg04xibswAttGsIYIIwJhDEqIq_6e6YN7sels7eQdv1MxOwOP9TnX02rAuDeyhc6ZTJzXsqkKFwK7iFElExbxG2MyAZS3oDrg_SwmOhk5wYB3wSH0c2OIUyrZmZmKRQRed4Pg4LAlQcy1ItmDgS1OYc5Dxv-6Z8TfHeFCG8RUSuctfIiqyOT798CCLkSEPhmIiKvOx5cPtb_F-rx5W_xjNwAoTYf9w72N8jNBAUFMUyzTTKYny_8E_D_5uXTVtAoOblq2f4NpdBtIw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+operando+techniques+to+understand+and+design+high+performance+and+stable+alkaline+membrane+fuel+cells&rft.jtitle=Nature+communications&rft.au=Peng%2C+Xiong&rft.au=Kulkarni%2C+Devashish&rft.au=Huang%2C+Ying&rft.au=Omasta%2C+Travis+J&rft.date=2020-07-16&rft.eissn=2041-1723&rft.volume=11&rft.issue=1&rft.spage=3561&rft_id=info:doi/10.1038%2Fs41467-020-17370-7&rft_id=info%3Apmid%2F32678101&rft.externalDocID=32678101 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |