Characterizing the RNA targets and position-dependent splicing regulation by TDP-43
TDP-43 is a RNA-binding protein that forms inclusion bodies in ALS. The authors show that TDP-43 preferentially binds long clusters of UG-rich sequences and that TDP-43 binding on pre-mRNAs influences alternative splicing. Many alternative mRNA isoforms regulated by TDP-43 encode proteins that regul...
Saved in:
Published in | Nature neuroscience Vol. 14; no. 4; pp. 452 - 458 |
---|---|
Main Authors | , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Nature Publishing Group US
01.04.2011
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | TDP-43 is a RNA-binding protein that forms inclusion bodies in ALS. The authors show that TDP-43 preferentially binds long clusters of UG-rich sequences and that TDP-43 binding on pre-mRNAs influences alternative splicing. Many alternative mRNA isoforms regulated by TDP-43 encode proteins that regulate neuronal development or are implicated in neurological diseases.
TDP-43 is a predominantly nuclear RNA-binding protein that forms inclusion bodies in frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS). The mRNA targets of TDP-43 in the human brain and its role in RNA processing are largely unknown. Using individual nucleotide-resolution ultraviolet cross-linking and immunoprecipitation (iCLIP), we found that TDP-43 preferentially bound long clusters of UG-rich sequences
in vivo
. Analysis of RNA binding by TDP-43 in brains from subjects with FTLD revealed that the greatest increases in binding were to the MALAT1 and NEAT1 noncoding RNAs. We also found that binding of TDP-43 to pre-mRNAs influenced alternative splicing in a similar position-dependent manner to Nova proteins. In addition, we identified unusually long clusters of TDP-43 binding at deep intronic positions downstream of silenced exons. A substantial proportion of alternative mRNA isoforms regulated by TDP-43 encode proteins that regulate neuronal development or have been implicated in neurological diseases, highlighting the importance of TDP-43 for the regulation of splicing in the brain. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
ISSN: | 1097-6256 1546-1726 1546-1726 |
DOI: | 10.1038/nn.2778 |