Systems Signatures Reveal Unique Remission-path of Type 2 Diabetes Following Roux-en-Y Gastric Bypass Surgery
Roux-en-Y Gastric bypass surgery (RYGB) is emerging as a powerful tool for treatment of obesity and may also cause remission of type 2 diabetes. However, the molecular mechanism of RYGB leading to diabetes remission independent of weight loss remains elusive. In this study, we profiled plasma metabo...
Saved in:
Published in | EBioMedicine Vol. 28; no. C; pp. 234 - 240 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.02.2018
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 2352-3964 2352-3964 |
DOI | 10.1016/j.ebiom.2018.01.018 |
Cover
Summary: | Roux-en-Y Gastric bypass surgery (RYGB) is emerging as a powerful tool for treatment of obesity and may also cause remission of type 2 diabetes. However, the molecular mechanism of RYGB leading to diabetes remission independent of weight loss remains elusive. In this study, we profiled plasma metabolites and proteins of 10 normal glucose-tolerant obese (NO) and 9 diabetic obese (DO) patients before and 1-week, 3-months, 1-year after RYGB. 146 proteins and 128 metabolites from both NO and DO groups at all four stages were selected for further analysis. By analyzing a set of bi-molecular associations among the corresponding network of the subjects with our newly developed computational method, we defined the represented physiological states (called the edge-states that reflect the interactions among the bio-molecules), and the related molecular networks of NO and DO patients, respectively. The principal component analyses (PCA) revealed that the edge states of the post-RYGB NO subjects were significantly different from those of the post-RYGB DO patients. Particularly, the time-dependent changes of the molecular hub-networks differed between DO and NO groups after RYGB. In conclusion, by developing molecular network-based systems signatures, we for the first time reveal that RYGB generates a unique path for diabetes remission independent of weight loss.
•Plasma proteomic and metabolomic datasets were collected with time-series mode in patients treated with RYGB.•Workflow to define the physiological states based on associations between biomolecules•Systems signatures reveal unique path for diabetes remission independent of weight loss. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Contributed equally. |
ISSN: | 2352-3964 2352-3964 |
DOI: | 10.1016/j.ebiom.2018.01.018 |