Assessment of Cellular Responses after Short- and Long-Term Exposure to Silver Nanoparticles in Human Neuroblastoma (SH-SY5Y) and Astrocytoma (D384) Cells

Silver nanoparticle (AgNP, 20 nm) neurotoxicity was evaluated by an integrated in vitro testing protocol employing human cerebral (SH-SY5Y and D384) cell lines. Cellular response after short-term (4–48 h, 1–100 μg/ml) and prolonged exposure (up to 10 days, 0.5–50 μg/ml) to AgNP was assessed by MTT,...

Full description

Saved in:
Bibliographic Details
Published inTheScientificWorld Vol. 2014; no. 2014; pp. 1 - 13
Main Authors De Simone, Uliana, Bellotti, Vittorio, Manzo, Luigi, Coccini, Teresa
Format Journal Article
LanguageEnglish
Published Cairo, Egypt Hindawi Publishing Corporation 01.01.2014
Hindawi Limited
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Silver nanoparticle (AgNP, 20 nm) neurotoxicity was evaluated by an integrated in vitro testing protocol employing human cerebral (SH-SY5Y and D384) cell lines. Cellular response after short-term (4–48 h, 1–100 μg/ml) and prolonged exposure (up to 10 days, 0.5–50 μg/ml) to AgNP was assessed by MTT, calcein-AM/PI, clonogenic tests. Pulmonary A549 cells were employed for data comparison along with silver nitrate as metal ionic form. Short-term data: (i) AgNP produced dose- and time-dependent mitochondrial metabolism changes and cell membrane damage (effects starting at 25 μg/ml after 4 h: EC50s were 40.7 ± 2.0 and 49.5 ± 2.1 μg/ml for SH-SY5Y and D384, respectively). A549 were less vulnerable; (ii) AgNP doses of ≤ 18 μg/ml were noncytotoxic; (iii) AgNO3 induced more pronounced effects compared to AgNP on cerebral cells. Long-term data: (i) low AgNP doses (≤1 μg/ml) compromised proliferative capacity of all cell types (cell sensibility: SHSY5Y > A549 > D384). Colony number decrease in SH-SY5Y and D384 was 50% and 25%, respectively, at 1 μg/ml, and lower dose (0.5 μg/ml) was significantly effective towards SH-SY5Y and pulmonary cells; (ii) cell proliferation activity was more affected by AgNO3 than AgNPs. In summary, AgNP-induced cytotoxic effects after short-term and prolonged exposure (even at low doses) were evidenced regardless of cell model types.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
Academic Editors: B. Soto-Blanco, A. Takagi, and D. N. Tripathi
ISSN:2356-6140
1537-744X
DOI:10.1155/2014/259765