Self-organization of muscle cell structure and function

The organization of muscle is the product of functional adaptation over several length scales spanning from the sarcomere to the muscle bundle. One possible strategy for solving this multiscale coupling problem is to physically constrain the muscle cells in microenvironments that potentiate the orga...

Full description

Saved in:
Bibliographic Details
Published inPLoS computational biology Vol. 7; no. 2; p. e1001088
Main Authors Grosberg, Anna, Kuo, Po-Ling, Guo, Chin-Lin, Geisse, Nicholas A, Bray, Mark-Anthony, Adams, William J, Sheehy, Sean P, Parker, Kevin Kit
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 01.02.2011
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The organization of muscle is the product of functional adaptation over several length scales spanning from the sarcomere to the muscle bundle. One possible strategy for solving this multiscale coupling problem is to physically constrain the muscle cells in microenvironments that potentiate the organization of their intracellular space. We hypothesized that boundary conditions in the extracellular space potentiate the organization of cytoskeletal scaffolds for directed sarcomeregenesis. We developed a quantitative model of how the cytoskeleton of neonatal rat ventricular myocytes organizes with respect to geometric cues in the extracellular matrix. Numerical results and in vitro assays to control myocyte shape indicated that distinct cytoskeletal architectures arise from two temporally-ordered, organizational processes: the interaction between actin fibers, premyofibrils and focal adhesions, as well as cooperative alignment and parallel bundling of nascent myofibrils. Our results suggest that a hierarchy of mechanisms regulate the self-organization of the contractile cytoskeleton and that a positive feedback loop is responsible for initiating the break in symmetry, potentiated by extracellular boundary conditions, is required to polarize the contractile cytoskeleton.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Conceived and designed the experiments: PLK CLG KKP. Performed the experiments: PLK NAG. Analyzed the data: PLK MAB. Contributed reagents/materials/analysis tools: SPS. Wrote the paper: AG PLK CLG KKP. Designed and implemented the model and in silico experiments: AG. Co-developed the math model: CLG, PLK, KKP. Provided important technological contributions to experimental techniques: WJA. Contributed important cell culture design and support: SPS.
ISSN:1553-7358
1553-734X
1553-7358
DOI:10.1371/journal.pcbi.1001088