Ginsenoside Rg3 attenuates pulmonary fibrosis by inhibiting endothelial to mesenchymal transition
Pulmonary fibrosis (PF) is a progressive and chronic lung disease characterized by excessive extracellular matrix (ECM) deposition and fibroblast proliferation. Endothelial-to-mesenchymal transition (EndMT) serves as a source of fibroblasts and contributes to PF progression. Ginsenoside Rg3 (Rg3), a...
Saved in:
Published in | Animal cells and systems Vol. 27; no. 1; pp. 159 - 170 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
Taylor & Francis
11.12.2023
Taylor & Francis Ltd Taylor & Francis Group 한국통합생물학회 |
Subjects | |
Online Access | Get full text |
ISSN | 1976-8354 2151-2485 2151-2485 |
DOI | 10.1080/19768354.2023.2244549 |
Cover
Loading…
Summary: | Pulmonary fibrosis (PF) is a progressive and chronic lung disease characterized by excessive extracellular matrix (ECM) deposition and fibroblast proliferation. Endothelial-to-mesenchymal transition (EndMT) serves as a source of fibroblasts and contributes to PF progression. Ginsenoside Rg3 (Rg3), a steroidal saponin extracted from ginseng, is known to have pharmacological effects on vascular diseases. We have previously demonstrated that Rg3 inhibits EndMT and prevents endothelial dysfunction. Thus, we hypothesized that Rg3 may be a potential therapeutic agent for PF-targeting EndMT. EndMT occurs in the lung tissue of a bleomycin-induced PF mouse model, which was confirmed by co-staining of endothelial and mesenchymal markers in the pulmonary vasculature and changes in the expression of these markers. Rg3 administration decreased EndMT and suppressed PF development. We also examined the effect of Rg3 in an in vitro EndMT model induced by co-treatment with TGF-β2 and IL-1β. Rg3 treatment alleviated the characteristics of EndMT such as spindle-shaped morphological changes, EndMT marker expression changes, Dil-Ac-LDL uptake and migratory properties. In addition, we demonstrated the mechanism by which Rg3 inhibits EndMT by regulating the Smad2/3 signaling pathway. Collectively, Rg3 can be a potential therapeutic agent for PF using the EndMT inhibition strategy, furthermore, it can be considered Rg3 as a therapeutic candidate for various EndMT-associated vascular diseases. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 1976-8354 2151-2485 2151-2485 |
DOI: | 10.1080/19768354.2023.2244549 |