Adiposity distribution influences circulating adiponectin levels

Thirty percent of obese individuals are metabolically healthy and were noted to have increased peripheral obesity. Adipose tissue is the primary source of adiponectin, an adipokine with insulin-sensitizing and anti-inflammatory properties. Lower adiponectin levels are observed in individuals with ob...

Full description

Saved in:
Bibliographic Details
Published inTranslational research : the journal of laboratory and clinical medicine Vol. 164; no. 4; pp. 270 - 277
Main Authors Guenther, Mitchell, James, Roland, Marks, Jacqueline, Zhao, Shi, Szabo, Aniko, Kidambi, Srividya
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.10.2014
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Thirty percent of obese individuals are metabolically healthy and were noted to have increased peripheral obesity. Adipose tissue is the primary source of adiponectin, an adipokine with insulin-sensitizing and anti-inflammatory properties. Lower adiponectin levels are observed in individuals with obesity and those at risk for cardiovascular disease. Conversely, higher levels are noted in some obese individuals who are metabolically healthy. Our objective was to determine whether abdominal adiposity distribution, rather than body mass index (BMI) status, influences plasma adiponectin level. A total of 424 subjects (female, 255) of Northern European ancestry were recruited from “Take Off Pounds Sensibly” weight loss club members. Demographics, anthropometrics, and dual-emission x-ray absorptiometry of the whole body, and computed tomography scan of the abdomen were performed to obtain total body fat content and to quantify subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT), respectively. Laboratory measurements included fasting plasma glucose, insulin, lipid panel, and adiponectin. Age- and gender-adjusted correlation analyses showed that adiponectin levels were negatively correlated with BMI, waist circumference, triglycerides, total fat mass, and VAT. A positive correlation was noted with high-density lipoprotein cholesterol and fat-free mass (P < 0.05). SAT-to-VAT ratios were also significantly associated with adiponectin (r = 0.13, P = 0.001). Further, the best positive predictors for plasma adiponectin were found to be SAT-to-VAT ratios and gender by regression analyses (P < 0.01). Abdominal adiposity distribution is an important predictor of plasma adiponectin and obese individuals with higher SAT-to-VAT ratios may have higher adiponectin levels.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1931-5244
1878-1810
1878-1810
DOI:10.1016/j.trsl.2014.04.008