Diurnal RNAPII-tethered chromatin interactions are associated with rhythmic gene expression in rice

The daily cycling of plant physiological processes is speculated to arise from the coordinated rhythms of gene expression. However, the dynamics of diurnal 3D genome architecture and their potential functions underlying the rhythmic gene expression remain unclear. Here, we reveal the genome-wide rhy...

Full description

Saved in:
Bibliographic Details
Published inGenome Biology Vol. 23; no. 1; p. 7
Main Authors Deng, Li, Gao, Baibai, Zhao, Lun, Zhang, Ying, Zhang, Qing, Guo, Minrong, Yang, Yongqing, Wang, Shuangqi, Xie, Liang, Lou, Hao, Ma, Meng, Zhang, Wei, Cao, Zhilin, Zhang, Qinghua, McClung, C Robertson, Li, Guoliang, Li, Xingwang
Format Journal Article
LanguageEnglish
Published England BioMed Central 06.01.2022
BMC
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The daily cycling of plant physiological processes is speculated to arise from the coordinated rhythms of gene expression. However, the dynamics of diurnal 3D genome architecture and their potential functions underlying the rhythmic gene expression remain unclear. Here, we reveal the genome-wide rhythmic occupancy of RNA polymerase II (RNAPII), which precedes mRNA accumulation by approximately 2 h. Rhythmic RNAPII binding dynamically correlates with RNAPII-mediated chromatin architecture remodeling at the genomic level of chromatin interactions, spatial clusters, and chromatin connectivity maps, which are associated with the circadian rhythm of gene expression. Rhythmically expressed genes within the same peak phases of expression are preferentially tethered by RNAPII for coordinated transcription. RNAPII-associated chromatin spatial clusters (CSCs) show high plasticity during the circadian cycle, and rhythmically expressed genes in the morning phase and non-rhythmically expressed genes in the evening phase tend to be enriched in RNAPII-associated CSCs to orchestrate expression. Core circadian clock genes are associated with RNAPII-mediated highly connected chromatin connectivity networks in the morning in contrast to the scattered, sporadic spatial chromatin connectivity in the evening; this indicates that they are transcribed within physical proximity to each other during the AM circadian window and are located in discrete "transcriptional factory" foci in the evening, linking chromatin architecture to coordinated transcription outputs. Our findings uncover fundamental diurnal genome folding principles in plants and reveal a distinct higher-order chromosome organization that is crucial for coordinating diurnal dynamics of transcriptional regulation.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1474-760X
1474-7596
1474-760X
DOI:10.1186/s13059-021-02594-7