Detailed simulations of cell biology with Smoldyn 2.1

Most cellular processes depend on intracellular locations and random collisions of individual protein molecules. To model these processes, we developed algorithms to simulate the diffusion, membrane interactions, and reactions of individual molecules, and implemented these in the Smoldyn program. Co...

Full description

Saved in:
Bibliographic Details
Published inPLoS computational biology Vol. 6; no. 3; p. e1000705
Main Authors Andrews, Steven S, Addy, Nathan J, Brent, Roger, Arkin, Adam P
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 01.03.2010
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Most cellular processes depend on intracellular locations and random collisions of individual protein molecules. To model these processes, we developed algorithms to simulate the diffusion, membrane interactions, and reactions of individual molecules, and implemented these in the Smoldyn program. Compared to the popular MCell and ChemCell simulators, we found that Smoldyn was in many cases more accurate, more computationally efficient, and easier to use. Using Smoldyn, we modeled pheromone response system signaling among yeast cells of opposite mating type. This model showed that secreted Bar1 protease might help a cell identify the fittest mating partner by sharpening the pheromone concentration gradient. This model involved about 200,000 protein molecules, about 7000 cubic microns of volume, and about 75 minutes of simulated time; it took about 10 hours to run. Over the next several years, as faster computers become available, Smoldyn will allow researchers to model and explore systems the size of entire bacterial and smaller eukaryotic cells.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
AC02-05CH11231
USDOE Office of Science (SC), Biological and Environmental Research (BER). Biological Systems Science Division
Current address: Division of Basic Science, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
Conceived and designed the experiments: SSA. Performed the experiments: SSA. Analyzed the data: SSA. Wrote the paper: SSA RB. Wrote the software: SSA NJA. Provided support and guidance: RB APA.
ISSN:1553-7358
1553-734X
1553-7358
DOI:10.1371/journal.pcbi.1000705