Mechanism of increased respiration in an H+-ATPase-defective mutant of Corynebacterium glutamicum

We previously reported that a spontaneous H+-ATPase-defective mutant of Corynebacterium glutamicum, F172-8, derived from C. glutamicum ATCC 14067, showed enhanced glucose consumption and respiration rates. To investigate the genome-based mechanism of enhanced respiration rate in such C. glutamicum m...

Full description

Saved in:
Bibliographic Details
Published inJournal of bioscience and bioengineering Vol. 113; no. 4; pp. 467 - 473
Main Authors Sawada, Kazunori, Kato, Yui, Imai, Keita, Li, Liyuan, Wada, Masaru, Matsushita, Kazunobu, Yokota, Atsushi
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 01.04.2012
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We previously reported that a spontaneous H+-ATPase-defective mutant of Corynebacterium glutamicum, F172-8, derived from C. glutamicum ATCC 14067, showed enhanced glucose consumption and respiration rates. To investigate the genome-based mechanism of enhanced respiration rate in such C. glutamicum mutants, A-1, an H+-ATPase-defective mutant derived from C. glutamicum ATCC 13032, which harbors the same point mutation as F172-8, was used in this study. A-1 showed similar fermentation profiles to F172-8 when cultured in a jar fermentor. Enzyme activity measurements, quantitative real-time PCR, and DNA microarray analysis suggested that A-1 enhanced malate:quinone oxidoreductase/malate dehydrogenase and l-lactate dehydrogenase/NAD+-dependent-lactate dehydrogenase coupling reactions, but not NADH dehydrogenase-II, for reoxidation of the excess NADH arising from enhanced glucose consumption. A-1 also up-regulated succinate dehydrogenase, which may result in the relief of excess proton-motive force (pmf) in the H+-ATPase mutant. In addition, the transcriptional level of cytochrome bd oxidase, but not cytochrome bc1-aa3, also increased, which may help prevent the excess pmf generation caused by enhanced respiration. These results indicate that C. glutamicum possesses intriguing strategies for coping with NADH over-accumulation. Furthermore, these mechanisms are different from those in Escherichia coli, even though the two species use similar strategies to prevent excess pmf generation.
Bibliography:http://dx.doi.org/10.1016/j.jbiosc.2011.11.021
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
ISSN:1389-1723
1347-4421
DOI:10.1016/j.jbiosc.2011.11.021